In this paper we consider the quantization of the 2d BF model coupled to topological matter. Guided by the rigid supersymmetry this system can be viewed as a super-BF model, where the field content is expressed in terms of superfields. A canonical analysis is done and the constraints are then implemented at the quantum level in order to construct the Hilbert space of the theory under the perspective of Loop Quantum Gravity methods.
The main goal of this work is to explore the symmetries and develop the dynamics associated to a 3D Abelian BF model coupled to scalar fields submitted to a sigma model like constraint, at the classical and quantum levels. We apply to the present model the techniques of Loop Quantum Gravity, construct its physical Hilbert space and its observables.
We present a complete quantization of Lorentzian D=1+2 gravity with cosmological constant, coupled to a set of topological matter fields. The approach of Loop Quantum Gravity is used thanks to a partial gauge fixing leaving a residual gauge invariance under a compact semi-simple gauge group, namely Spin(4) = SU(2) x SU(2). A pair of quantum observables is constructed, which are non-trivial despite of being null at the classical level.
In this paper, we study a class of symmetry reduced models of $mathcal{N}=1$ supergravity using self-dual variables. It is based on a particular Ansatz for the gravitino field as proposed by DEath et al. We show that the essential part of the constraint algebra in the classical theory closes. In particular, the (graded) Poisson bracket between the left and right supersymmetry constraint reproduces the Hamiltonian constraint. For the quantum theory, we apply techniques from the manifestly supersymmetric approach to loop quantum supergravity, which yields a graded analog of the holonomy-flux algebra and a natural state space. We implement the remaining constraints in the quantum theory. For a certain subclass of these models, we show explicitly that the (graded) commutator of the supersymmetry constraints exactly reproduces the classical Poisson relations. In particular, the trace of the commutator of left and right supersymmetry constraints reproduces the Hamilton constraint operator. Finally, we consider the dynamics of the theory and compare it to a quantization using standard variables and standard minisuperspace techniques.
De Sitter Chern-Simons gravity in D = 1 + 2 spacetime is known to possess an extension with a Barbero-Immirzi like parameter. We find a partial gauge fixing which leaves a compact residual gauge group, namely SU(2). The compacticity of the residual gauge group opens the way to the usual LQG quantization techniques. We recall the exemple of the LQG quantization of SU(2) CS theory with cylindrical space topology, which thus provides a complete LQG of a Lorentzian gravity model in 3-dimensional space-time.
This article presents an extended model of gravity obtained by gauging the AdS-Mawell algebra. It involves additional fields that shift the spin connection, leading effectively to theory of two independent connections. Extension of algebraic structure by another tetrad gives rise to the model described by a pair of Einstein equations.