Do you want to publish a course? Click here

Some applications of l_p-cohomology to boundaries of Gromov hyperbolic spaces

255   0   0.0 ( 0 )
 Added by Bruce Kleiner
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We study quasi-isometry invariants of Gromov hyperbolic spaces, focussing on the l_p-cohomology and closely related invariants such as the conformal dimension, combinatorial modulus, and the Combinatorial Loewner Property. We give new constructions of continuous l_p-cohomology, thereby obtaining information about the l_p-equivalence relation, as well as critical exponents associated with l_p-cohomology. As an application, we provide a flexible construction of hyperbolic groups which do not have the Combinatorial Loewner Property, extending and complementing earlier examples. Another consequence is the existence of hyperbolic groups with Sierpinski carpet boundary which have conformal dimension arbitrarily close to 1. In particular, we answer questions of Mario Bonk and John Mackay.



rate research

Read More

We give upper bounds, linear in rank, to the topological dimensions of the Gromov boundaries of the intersection graph, the free factor graph and the cyclic splitting graph of a finitely generated free group.
Coning off a collection of uniformly quasiconvex subsets of a Gromov hyperbolic space leaves a new space, called the cone-off. Kapovich and Rafi generalized work of Bowditch to show this space is still Gromov hyperbolic. We show that the Gromov boundary of cone-off embeds in the boundary of the original hyperbolic space. (A stronger version of this result was previously obtained by Dowdall and Taylor; see Note in text.) Moreover, under some acylindricity assumptions we give a precise description of the image. As an application, we are able to characterize the elliptic and loxodromic elements of groups acting on certain cone-offs of acylindrical actions.
We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between Heintze groups. Then we will see how these results together with the existing tools related to isometries can be applied to groups of dimension 4 and 5 in particular. Thus we take steps towards determining all the equivalence classes of groups up to isometry and quasi-isometry. We completely solve the classification up to isometry for simply connected solvable groups in dimension 4, and for the subclass of groups of polynomial growth in dimension 5.
This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our viewpoint is algebraic: such a phenomenon happens if and only if the semigroup generated by each horizontal half-space is a vertical half-space. We call emph{semigenerated} those Carnot groups with this property. For Carnot groups of nilpotency step 3 we provide a complete characterization of semigeneration in terms of whether such groups do not have any Engel-type quotients. Engel-type groups, which are introduced here, are the minimal (in terms of quotients) counterexamples. In addition, we give some sufficient criteria for semigeneration of Carnot groups of arbitrary step. For doing this, we define a new class of Carnot groups, which we call type $(Diamond)$ and which generalizes the previous notion of type $(star)$ defined by M. Marchi. As an application, we get that in type $ (Diamond) $ groups and in step 3 groups that do not have any Engel-type algebra as a quotient, one achieves a strong rectifiability result for sets of finite perimeter in the sense of Franchi, Serapioni, and Serra-Cassano.
We give a complete list of the cobounded actions of solvable Baumslag-Solitar groups on hyperbolic metric spaces up to a natural equivalence relation. The set of equivalence classes carries a natural partial order first introduced by Abbott-Balasubramanya-Osin, and we describe the resulting poset completely. There are finitely many equivalence classes of actions, and each equivalence class contains the action on a point, a tree, or the hyperbolic plane.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا