Do you want to publish a course? Click here

Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model

111   0   0.0 ( 0 )
 Added by Frithjof Karsch
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results are obtained using calculations with tree level improved gauge and the highly improved staggered quark (HISQ) actions with almost physical light and strange quark masses at three different values of the lattice cut-off. Our choice of parameters corresponds to a value of 160 MeV for the lightest pseudo scalar Goldstone mass and a physical value of the kaon mass. The three diagonal charge susceptibilities and the correlations among conserved charges have been extrapolated to the continuum limit in the temperature interval 150 MeV <T < 250 MeV. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T<= 150 MeV. We observe significant deviations in the temperature range 160 MeV < T < 170 MeV and qualitative differences in the behavior of the three conserved charge sectors. At T < 160 MeV quadratic net baryon number fluctuations in QCD agree with HRG model calculations while, the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These findings are relevant to the discussion of freeze-out conditions in relativistic heavy ion collisions.



rate research

Read More

108 - H.-T. Ding , S.-T. Li , Q. Shi 2021
We present results on the second-order fluctuations of and correlations among net baryon number, electric charge and strangeness in (2+1)-flavor lattice QCD in the presence of a background magnetic field. Simulations are performed using the tree-level improved gauge action and the highly improved staggered quark (HISQ) action with a fixed scale approach ($asimeq$ 0.117 fm). The light quark mass is set to be 1/10 of the physical strange quark mass and the corresponding pion mass is about 220 MeV at vanishing magnetic field. Simulations are performed on $32^3times N_tau$ lattices with 9 values of $N_tau$ varying from 96 to 6 corresponding to temperatures ranging from zero up to 281 MeV. The magnetic field strength $eB$ is simulated with 15 different values up to $sim$2.5 GeV$^2$ at each nonzero temperature. We find that quadratic fluctuations and correlations do not show any singular behavior at zero temperature in the current window of $eB$ while they develop peaked structures at nonzero temperatures as $eB$ grows. By comparing the electric charge-related fluctuations and correlations with hadron resonance gas model calculations and ideal gas limits we find that the changes in degrees of freedom start at lower temperatures in stronger magnetic fields. Significant effects induced by magnetic fields on the isospin symmetry and ratios of net baryon number and baryon-strangeness correlation to strangeness fluctuation are observed, which could be useful for probing the existence of a magnetic field in heavy-ion collision experiments.
The appearance of large, none-Gaussian cumulants of the baryon number distribution is commonly discussed as a signal for the QCD critical point. We review the status of the Taylor expansion of cumulant ratios of baryon number fluctuations along the freeze-out line and also compare QCD results with the corresponding proton number fluctuations as measured by the STAR Collaboration at RHIC. To further constrain the location of a possible QCD critical point we discuss poles of the baryon number fluctuations in the complex plane. Here we use not only the Taylor coefficients obtained at zero chemical potential but perform also calculations of Taylor expansion coefficients of the pressure at purely imaginary chemical potentials.
108 - Frithjof Karsch 2019
We present recent results on the critical and pseudo-critical temperatures in (2+1)-flavor QCD with a physical strange quark mass and two degenerate light quark masses extrapolated to the chiral limit and tuned to the physical value, respectively. We furthermore discuss implication of the observed low chiral phase transition temperature, Tc0=132_{-6}^{+3} MeV, for the structure of cumulants of conserved charge fluctuations at vanishing baryon chemical potential and consequences for the possible location of the QCD critical endpoint in the QCD phase diagram at non-zero baryon chemical potential.
164 - Frithjof Karsch 2013
We compare recent lattice QCD calculations of higher order cumulants of net-strangeness fluctuations with hadron resonance gas (HRG) model calculations. Up to the QCD transition temperature Tc=( 154 +/- 9) MeV we find good agreement between QCD and HRG model calculations of second and fourth order cumulants, even when subtle aspects of net-baryon number, strangeness and electric charge fluctuations are probed. In particular, the fourth order cumulants indicate that also in the strangeness sector of QCD the failure of HRG model calculations sets in quite abruptly in the vicinity of the QCD transition temperature and is apparent in most observables for T > 160 MeV.
We present our most recent investigations on the QCD cross-over transition temperatures with 2+1 staggered flavours and one-link stout improvement [JHEP 1009:073, 2010]. We extend our previous two studies [Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)] by choosing even finer lattices ($N_t$=16) and we work again with physical quark masses. All these results are confronted with the predictions of the Hadron Resonance Gas model and Chiral Perturbation Theory for temperatures below the transition region. Our results can be reproduced by using the physical spectrum in these analytic calculations. A comparison with the results of the hotQCD collaboration is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا