Do you want to publish a course? Click here

Vibrational structures and long-lasting electronic coherence

209   0   0.0 ( 0 )
 Added by Martin Plenio
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent observations of beating signals in the excitation energy transfer dynamics of photosynthetic complexes have been interpreted as evidence for sustained coherences that are sufficiently long-lived for energy transport and coherence to coexist. The possibility that coherence may be exploited in biological processes has opened up new avenues of exploration at the interface of physics and biology. The microscopic origin of these long-lived coherences, however, remains to be uncovered. Here we present such a mechanism and verify it by numerically exact simulations of system-environment dynamics. Crucially, the non-trivial spectral structures of the environmental fluctuations and particularly discrete vibrational modes can lead to the generation and sustenance of both oscillatory energy transport and electronic coherence on timescales that are comparable to excitation energy transport. This suggests that the non-trivial structure of protein environments plays a more significant role for coherence in biological processes than previously believed.



rate research

Read More

80 - Mihaela Vatasescu 2018
We characterize both entanglement and quantum coherence in a molecular system by connecting the linear entropy of electronic-nuclear entanglement with Wigner-Yanase skew information measuring vibronic coherence and local quantum uncertainty on electronic energy. Linear entropy of entanglement and quantifiers of quantum coherence are derived for a molecular system described in a bipartite Hilbert space H=Hel x Hvib of finite dimension Nel x Nv, and relations between them are established. For the specific case of the electronic-vibrational entanglement, we find the linear entropy of entanglement as having a more complex informational content than the von Neumann entropy. By keeping the information carried by the vibronic coherences in a molecule, linear entropy seizes vibrational motion in the electronic potentials as entanglement dynamics. We analyze entanglement oscillations in an isolated molecule, and show examples for the control of entanglement dynamics in a molecule through the creation of coherent vibrational wave packets in several electronic potentials by using chirped laser pulses.
Atomic lattice clocks have spurred numerous ideas for tests of fundamental physics, detection of general relativistic effects, and studies of interacting many-body systems. On the other hand, molecular structure and dynamics offer rich energy scales that are at the heart of new protocols in precision measurement and quantum information science. Here we demonstrate a fundamentally distinct type of lattice clock that is based on vibrations in diatomic molecules, and present coherent Rabi oscillations between weakly and deeply bound molecules that persist for 10s of milliseconds. This control is made possible by a state-insensitive magic lattice trap that weakly couples to molecular vibronic resonances and enhances the coherence time between molecules and light by several orders of magnitude. The achieved quality factor $Q=8times10^{11}$ results from 30-Hz narrow resonances for a 25-THz clock transition in Sr$_2$. Our technique of extended coherent manipulation is applicable to long-term storage of quantum information in qubits based on ultracold polar molecules, while the vibrational clock enables precise probes of interatomic forces, tests of Newtonian gravitation at ultrashort range, and model-independent searches for electron-to-proton mass ratio variations.
106 - Mihaela Vatasescu 2018
Non-Markovian quantum evolution of the electronic subsystem in a laser-driven molecule is characterized through the appearance of negative decoherence rates in the canonical form of the electronic master equation. For a driven molecular system described in a bipartite Hilbert space H=Hel x Hvib of dimension 2 x Nv, we derive the canonical form of the electronic master equation, deducing the canonical measures of non-Markovianity and the Bloch volume of accessible states. We find that one of the decoherence rates is always negative, accounting for the inherent non-Markovian character of the electronic evolution in the vibrational environment. Enhanced non-Markovian behavior, characterized by two negative decoherence rates, appears if there is a coupling between the electronic states g, e, such that the evolution of the electronic populations obeys d(PgPe)/dt > 0. Non-Markovianity of the electronic evolution is analyzed in relation to temporal behaviors of the electronic-vibrational entanglement and electronic coherence, showing that enhanced non-Markovian behavior accompanies entanglement increase. Taking as an example the coupling of two electronic states by a laser pulse in the Cs2 molecule, we analyze non-Markovian dynamics under laser pulses of various strengths, finding that the weaker pulse stimulates the bigger amount of non-Markovianity. We show that increase of the electronic-vibrational entanglement over a time interval is correlated to the growth of the total amount of non-Markovianity calculated over the same interval using canonical measures and connected with the increase of the Bloch volume. After the pulse, non-Markovian behavior is correlated to electronic coherence, such that vibrational motion in the electronic potentials which diminishes the nuclear overlap, implicitly increasing the linear entropy of entanglement, brings a memory character to dynamics.
We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in non linear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the non linear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.
50 - H. Caps , R. Michel , N. Lecocq 2003
We have performed experiments of axial segregation in the Oyamas drum. We have tested binary granular mixtures during very long times. The segregation patterns have been captured by a CCD camera and spatio-temporal graphs are created. We report the occurence of instabilities which can last several hours. We stress that those instabilities originate from the competition between axial and radial segregations. We put into evidence the occurence of giant fluctuations in the fraction of grain species along the surface during the unstable periods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا