Do you want to publish a course? Click here

Frames, semi-frames, and Hilbert scales

116   0   0.0 ( 0 )
 Added by Jean-Pierre Antoine
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Given a total sequence in a Hilbert space, we speak of an upper (resp. lower) semi-frame if only the upper (resp. lower) frame bound is valid. Equivalently, for an upper semi-frame, the frame operator is bounded, but has an unbounded inverse, whereas a lower semi-frame has an unbounded frame operator, with bounded inverse. For upper semi-frames, in the discrete and the continuous case, we build two natural Hilbert scales which may yield a novel characterization of certain function spaces of interest in signal processing. We present some examples and, in addition, some results concerning the duality between lower and upper semi-frames, as well as some generalizations, including fusion semi-frames and Banach semi-frames.



rate research

Read More

A purely algebraic algorithm for computation of invariants (generalized Casimir operators) of Lie algebras by means of moving frames is discussed. Results on the application of the method to computation of invariants of low-dimensional Lie algebras and series of solvable Lie algebras restricted only by a required structure of the nilradical are reviewed.
We give a comprehensive introduction to a general modular frame construction in Hilbert C*-modules and to related modular operators on them. The Hilbert space situation appears as a special case. The reported investigations rely on the idea of geometric dilation to standard Hilbert C*-modulesover unital C*-algebras that admit an orthonormal Riesz basis. Interrelations and applications to classical linear frame theory are indicated. As an application we describe the nature of families of operators {S_i} such that SUM_i S*_iS_i=id_H, where H is a Hilbert space. Resorting to frames in Hilbert spaces we discuss some measures for pairs of frames to be close to one another. Most of the measures are expressed in terms of norm-distances of different kinds of frame operators. In particular, the existence and uniqueness of the closest (normalized) tight frame to a given frame is investigated. For Riesz bases with certain restrictions the set of closetst tight frames often contains a multiple of its symmetric orthogonalization (i.e. Lowdin orthogonalization).
142 - S. Albeverio , S.V. Kozyrev 2008
The general construction of frames of p-adic wavelets is described. We consider the orbit of a mean zero generic locally constant function with compact support (mean zero test function) with respect to the action of the p-adic affine group and show that this orbit is a uniform tight frame. We discuss relation of this result to the multiresolution wavelet analysis.
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelarations. We show that the incorporation of rotational accelerations requires a class of emph{loop prolongations} of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-stablished framework for implementing symmetry transformations in quantum mechanics.
We show that the Wigner-Bargmann program of grounding non-relativistic quantum mechanics in the unitary projective representations of the Galilei group can be extended to include all non-inertial reference frames. The key concept is the emph{Galilean line group}, the group of transformations that ties together all accelerating reference frames, and its representations. These representations are constructed under the natural constraint that they reduce to the well-known unitary, projective representations of the Galilei group when the transformations are restricted to inertial reference frames. This constraint can be accommodated only for a class of representations with a sufficiently rich cocycle structure. Unlike the projective representations of the Galilei group, these cocycle representations of the Galilean line group do not correspond to central extensions of the group. Rather, they correspond to a class of non-associative extensions, known as emph{loop prolongations}, that are determined by three-cocycles. As an application, we show that the phase shifts due to the rotation of the earth that have been observed in neutron interferometry experiments and the rotational effects that lead to simulated magnetic fields in optical lattices can be rigorously derived from the representations of the loop prolongations of the Galilean line group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا