Einstein like $(varepsilon)$-para Sasakian manifolds


Abstract in English

Einstein like $(varepsilon)$-para Sasakian manifolds are introduced. For an $(varepsilon) $-para Sasakian manifold to be Einstein like, a necessary and sufficient condition in terms of its curvature tensor is obtained. The scalar curvature of an Einstein like $(varepsilon) $-para Sasakian manifold is obtained and it is shown that the scalar curvature in this case must satisfy certain differential equation. A necessary and sufficient condition for an $(varepsilon) $-almost paracontact metric hypersurface of an indefinite locally Riemannian product manifold to be $(varepsilon) $-para Sasakian is obtained and it is proved that the $(varepsilon) $-para Sasakian hypersurface of an indefinite locally Riemannian product manifold of almost constant curvature is always Einstein like.

Download