Do you want to publish a course? Click here

The Herschel Filament: a signature of the environmental drivers of galaxy evolution during the assembly of massive clusters at z=0.9

104   0   0.0 ( 0 )
 Added by Kristen Coppin Dr.
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have discovered a 2.5 Mpc (projected) long filament of infrared-bright galaxies connecting two of the three ~5x10^14 Msun clusters making up the RCS 2319+00 supercluster at z=0.9. The filament is revealed in a deep Herschel Spectral and Photometric Imaging REceiver (SPIRE) map that shows 250-500um emission associated with a spectroscopically identified filament of galaxies spanning two X-ray bright cluster cores. We estimate that the total (8-1000um) infrared luminosity of the filament is Lir~5x10^12 Lsun, which, if due to star formation alone, corresponds to a total SFR 900 Msun/yr. We are witnessing the scene of the build-up of a >10^15 Msun cluster of galaxies, seen prior to the merging of three massive components, each of which already contains a population of red, passive galaxies that formed at z>2. The infrared filament demonstrates that significant stellar mass assembly is taking place in the moderate density, dynamically active circumcluster environments of the most massive clusters at high-redshift, and this activity is concomitant with the hierarchical build-up of large scale structure.



rate research

Read More

We study the stellar mass assembly of the Spiderweb Galaxy (MRC 1138-262), a massive z = 2.2 radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by z = 0, increasing its stellar mass by up to a factor of ~ 2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.
120 - K. Kovac , S. J. Lilly , C. Knobel 2013
We explore the role of environment in the evolution of galaxies over 0.1<z<0.7 using the final zCOSMOS-bright data set. Using the red fraction of galaxies as a proxy for the quenched population, we find that the fraction of red galaxies increases with the environmental overdensity and with the stellar mass, consistent with previous works. As at lower redshift, the red fraction appears to be separable in mass and environment, suggesting the action of two processes: mass and environmental quenching. The parameters describing these appear to be essentially the same at z~0.7 as locally. We explore the relation between red fraction, mass and environment also for the central and satellite galaxies separately, paying close attention to the effects of impurities in the central-satellite classification and using carefully constructed samples matched in stellar mass. There is little evidence for a dependence of the red fraction of centrals on overdensity. Satellites are consistently redder at all overdensities, and the satellite quenching efficiency increases with overdensity at 0.1<z<0.4. This is less marked at higher redshift, but both are nevertheless consistent with the equivalent local measurements. At a given stellar mass, the fraction of galaxies that are satellites also increases with the overdensity. At a given overdensity and mass, the obtained relation between the environmental quenching and the satellite fraction agrees well with the satellite quenching efficiency, demonstrating that the environmental quenching in the overall population is consistent with being entirely produced through the satellite quenching process at least up to z=0.7. However, despite the unprecedented size of our high redshift samples, the associated statistical uncertainties are still significant and our statements should be understood as approximations to physical reality, rather than physically exact formulae.
Galaxy evolution reveals itself not only through the evolving properties of galaxies themselves but also through its impact on the surrounding environment. The intergalactic medium in particular holds a fossil record of past galaxy activity, imprinted on its thermodynamic and chemical properties. This is most easily discerned in small galaxy groups, where the gravitational heating of this gas renders it observable by X-ray telescopes while still leaving its properties highly susceptible to the effects of galactic feedback. X-ray observations of the hot gas in groups can therefore provide a view of galactic feedback history that can complement dedicated studies of AGN and star formation activity at low and high redshift. Based on high-quality X-ray data of a sample of nearby groups, we present initial results of such a study and discuss some implications for the AGN and star formation histories of the group members.
We present a comprehensive galaxy cluster study of XMMU J1230.3+1339 based on a joint analysis of X-ray data, optical imaging and spectroscopy observations, weak lensing results, and radio properties for achieving a detailed multi-component view of this newly discovered system at z=0.975. We find an optically very rich and massive system with M200$simeq$(4.2$pm$0.8)$times$10^14 M$sun$, Tx$simeq$5.3(+0.7--0.6)keV, and Lx$simeq$(6.5$pm$0.7)$times$10^44 erg/s, for which various widely used mass proxies are measured and compared. We have identified multiple cluster-related components including a central fly-through group close to core passage with associated marginally extended 1.4GHz radio emission possibly originating from the turbulent wake region of the merging event. On the cluster outskirts we see evidence for an on-axis infalling group with a second Brightest Cluster Galaxy (BCG) and indications for an additional off-axis group accretion event. We trace two galaxy filaments beyond the nominal cluster radius and provide a tentative reconstruction of the 3D-accretion geometry of the system. In terms of total mass, ICM structure, optical richness, and the presence of two dominant BCG-type galaxies, the newly confirmed cluster XMMU J1230.3+1339 is likely the progenitor of a system very similar to the local Coma cluster, differing by 7.6 Gyr of structure evolution.
We investigate the evolution of the optical and near-infrared colour-magnitude relation in an homogeneous sample of massive clusters from z = 1 to the present epoch. By comparing deep Hubble Space Telescope ACS imaging of X-ray selected MACS survey clusters at z = 0.5 to the similarly selected LARCS sample at z = 0.1 we find that the rest-frame d(U -V)/dV slope of the colour-magnitude relation evolves with redshift which we attribute to the build up of the red sequence over time. This rest frame slope evolution is not adequately reproduced by that predicted from semi-analytic models based on the Millennium Simulation despite a prescription for the build up of the red sequence by in-falling galaxies, strangulation. We observe no strong correlation between this slope and the cluster environment at a given redshift demonstrating that the observed evolution is not due to a secondary correlation. Also presented are near-infrared UKIRT WFCAM observations of the LARCS clusters which confirm and improve on the the result from Stott et al. (2007) finding that there has been a two-fold increase in faint MV > -20 galaxies on the red sequence since z = 0.5 to a significance of 5sigma.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا