We study expansion/contraction properties of some common classes of mappings of the Euclidean space ${mathbb R}^n, nge 2,,$ with respect to the distance ratio metric. The first main case is the behavior of Mobius transformations of the unit ball in ${mathbb R}^n$ onto itself. In the second main case we study the polynomials of the unit disk onto a subdomain of the complex plane. In both cases sharp Lipschitz constants are obtained.