Recently, we have experimentally demonstrated a continuous loading mechanism for an optical dipole trap from a guided atomic beam [1]. The observed evolution of the number of atoms and temperature in the trap are consequences of the unusual trap geometry. In the present paper, we develop a model based on a set of rate equations to describe the loading dynamics of such a mechanism. We consider the collision statistics in the non-uniform trap potential that leads to twodimensional evaporation. The comparison between the resulting computations and experimental data allows to identify the dominant loss process and suggests ways to enhance the achievable steady-state atom number. Concerning subsequent evaporative cooling, we find that the possibility of controlling axial and radial confinement independently allows faster evaporation ramps compared to single beam optical dipole traps.