No Arabic abstract
Background: Following the 2007 precise measurements of monopole strengths in tin isotopes, there has been a continuous theoretical effort to obtain a precise description of the experimental results. Up to now, there is no satisfactory explanation of why the tin nuclei appear to be significantly softer than 208Pb. Purpose: We determine the influence of finite-range and separable pairing interactions on monopole strength functions in semi-magic nuclei. Methods: We employ self-consistently the Quasiparticle Random Phase Approximation on top of spherical Hartree-Fock-Bogolyubov solutions. We use the Arnoldi method to solve the linear-response problem with pairing. Results: We found that the difference between centroids of Giant Monopole Resonances measured in lead and tin (about 1 MeV) always turns out to be overestimated by about 100%. We also found that the volume incompressibility, obtained by adjusting the liquid-drop expression to microscopic results, is significantly larger than the infinite-matter incompressibility. Conclusions: The zero-range and separable pairing forces cannot induce modifications of monopole strength functions in tin to match experimental data.
Within a simple SO(8) algebraic model, the coexistence between isoscalar and isovector pairing modes can be successfully described using a mean-field method plus restoration of broken symmetries. In order to port this methodology to real nuclei, we need to employ realistic density functionals in the pairing channel. In this article, we present an analytical derivation of matrix elements of a separable pairing interaction in Cartesian coordinates and we correct errors of derivations available in the literature. After implementing this interaction in the code hfodd, we study evolution of pairing gaps in the chain of deformed Erbium isotopes, and we compare the results with a standard density-dependent contact pairing interaction.
The structure and density dependence of the pairing gap in infinite matter is relevant for astrophysical phenomena and provides a starting point for the discussion of pairing properties in nuclear structure. Short-range correlations can significantly deplete the available single-particle strength around the Fermi surface and thus provide a reduction mechanism of the pairing gap. Here, we study this effect in the singlet and triplet channels of both neutron matter and symmetric nuclear matter. Our calculations use phase-shift equivalent interactions and chiral two-body and three-body interactions as a starting point. We find an unambiguous reduction of the gap in all channels with very small dependence on the NN force in the singlet neutron matter and the triplet nuclear matter channel. In the latter channel, short range correlations alone provide a 50% reduction of the pairing gap.
In this contribution we make a short review of recent progress on topics of current interest in nuclear physics and nuclear astrophysics. In particular, we discuss a re-analysis of the extraction of the dipole response of the pigmy resonance in $^{68}$Ni based on a continuum discretized coupled-channels calculation in relativistic Coulomb excitation experiments. We also discuss the forthcoming progresses made by our group on the Alt-Sandhas-Grassberber approach to (d,p) reactions and future expectations. The role of separable potentials in solving such equations with a test case based on applications of such potentials to phase-shift analysis is also presented.
A finite rank separable approximation for the quasiparticle RPA calculations with Skyrme interactions that was proposed in our previous work is extended to take into account the coupling between one- and two-phonon terms in the wave functions of excited states. It is shown that characteristics calculated within the suggested approach are in a good agreement with available experimental data.
We review the phenomenon of fine structure of nuclear giant resonances and its relation to different resonance decay mechanisms. Wavelet analysis of the experimental spectra provides quantitative information on the fine structure in terms of characteristic scales. A comparable analysis of resonance strength distributions from microscopic approaches incorporating one or several of the resonance decay mechanisms allows conclusions on the source of the fine structure. For the isoscalar giant quadrupole resonance (ISGQR), spreading through the first step of the doorway mechanism, i.e. coupling between one particle-one hole ($1p1h$) and two particle-two hole ($2p2h$) states is identified as the relevant mechanism. In heavy nuclei it is dominated by coupling to low-lying surface vibrations, while in lighter nuclei stochastic coupling becomes increasingly important. The fine structure observed for the isovector giant dipole resonance (IVGDR) arises mainly from the fragmentation of the $1p1h$ strength (Landau damping), although some indications for the relevance of the spreading width are also found.