Finite-size left-passage probability in percolation


Abstract in English

We obtain an exact finite-size expression for the probability that a percolation hull will touch the boundary, on a strip of finite width. Our calculation is based on the q-deformed Knizhnik--Zamolodchikov approach, and the results are expressed in terms of symplectic characters. In the large size limit, we recover the scaling behaviour predicted by Schramms left-passage formula. We also derive a general relation between the left-passage probability in the Fortuin--Kasteleyn cluster model and the magnetisation profile in the open XXZ chain with diagonal, complex boundary terms.

Download