No Arabic abstract
Quantum tomography requires repeated measurements of many copies of the physical system, all prepared by a source in the unknown state. In the limit of very many copies measured, the often-used maximum-likelihood (ML) method for converting the gathered data into an estimate of the state works very well. For smaller data sets, however, it often suffers from problems of rank deficiency in the estimated state. For many systems of relevance for quantum information processing, the preparation of a very large number of copies of the same quantum state is still a technological challenge, which motivates us to look for estimation strategies that perform well even when there is not much data. In this article, we review the concept of minimax state estimation, and use minimax ideas to construct a simple estimator for quantum states. We demonstrate that, for the case of tomography of a single qubit, our estimator significantly outperforms the ML estimator for small number of copies of the state measured. Our estimator is always full-rank, and furthermore, has a natural dependence on the number of copies measured, which is missing in the ML estimator.
For two qubits and for general bipartite quantum systems, we give a simple spectral condition in terms of the ordered eigenvalues of the density matrix which guarantees that the corresponding state is separable.
In physics, experiments ultimately inform us as to what constitutes a good theoretical model of any physical concept: physical space should be no exception. The best picture of physical space in Newtonian physics is given by the configuration space of a free particle (or the center of mass of a closed system of particles). This configuration space (as well as phase space), can be constructed as a representation space for the relativity symmetry. From the corresponding quantum symmetry, we illustrate the construction of a quantum configuration space, similar to that of quantum phase space, and recover the classical picture as an approximation through a contraction of the (relativity) symmetry and its representations. The quantum Hilbert space reduces into a sum of one-dimensional representations for the observable algebra, with the only admissible states given by coherent states and position eigenstates for the phase and configuration space pictures, respectively. This analysis, founded firmly on known physics, provides a quantum picture of physical space beyond that of a finite-dimensional manifold, and provides a crucial first link for any theoretical model of quantum spacetime at levels beyond simple quantum mechanics. It also suggests looking at quantum physics from a different perspective.
The control of the quantum transport is an issue of current interest for the construction of new devices. In this work, we investigate this possibility in the realm of quantum graphs. The study allows the identification of two distinct periodic quantum effects which are related to quantum complexity, one being the identification of transport inefficiency, and the other the presence of peaks of full transmission inside regions of suppression of transport in some elementary arrangements of graphs. Motivated by the power of quantum graphs, we elaborate on the construction of simple devices, based on microwave and optical fibers networks, and also on quantum dots, nanowires and nanorings. The elementary devices can be used to construct composed structures with important quantum properties, which may be used to manipulate the quantum transport.
The experimental realization of many-body entangled states is one of the main goals of quantum technology as these states are a key resource for quantum computation and quantum sensing. However, increasing the number of photons in an entangled state has been proved to be a painstakingly hard task. This is a result of the non-deterministic emission of current photon sources and the distinguishability between photons from different sources. Moreover, the generation rate and the complexity of the optical setups hinder scalability. Here we present a new scheme that is compact, requires a very modest amount of components, and avoids the distinguishability issues by using only one single-photon source. States of any number of photons are generated with the same configuration, with no need for increasing the optical setup. The basic operation of this scheme is experimentally demonstrated and its sensitivity to imperfections is considered.
Preparation of Gibbs distributions is an important task for quantum computation. It is a necessary first step in some types of quantum simulations and further is essential for quantum algorithms such as quantum Boltzmann training. Despite this, most methods for preparing thermal states are impractical to implement on near-term quantum computers because of the memory overheads required. Here we present a variational approach to preparing Gibbs states that is based on minimizing the free energy of a quantum system. The key insight that makes this practical is the use of Fourier series approximations to the logarithm that allows the entropy component of the free-energy to be estimated through a sequence of simpler measurements that can be combined together using classical post processing. We further show that this approach is efficient for generating high-temperature Gibbs states, within constant error, if the initial guess for the variational parameters for the programmable quantum circuit are sufficiently close to a global optima. Finally, we examine the procedure numerically and show the viability of our approach for five-qubit Hamiltonians using Trotterized adiabatic state preparation as an ansatz.