Do you want to publish a course? Click here

Non-Gaussian isocurvature perturbations in dark radiation

179   0   0.0 ( 0 )
 Added by Koichi Miyamoto
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study non-Gaussian properties of the isocurvature perturbations in the dark radiation, which consists of the active neutrinos and extra light species, if exist. We first derive expressions for the bispectra of primordial perturbations which are mixtures of curvature and dark radiation isocurvature perturbations. We also discuss CMB bispectra produced in our model and forecast CMB constraints on the nonlinearity parameters based on the Fisher matrix analysis. Some concrete particle physics motivated models are presented in which large isocurvature perturbations in extra light species and/or the neutrino density isocurvature perturbations as well as their non-Gaussianities may be generated. Thus detections of non-Gaussianity in the dark radiation isocurvature perturbation will give us an opportunity to identify the origin of extra light species and lepton asymmetry.



rate research

Read More

The existence of dark radiation that is completely decoupled from the standard model in the early Universe leaves open the possibility of an associated dark radiation isocurvature mode. We show that the presence of dark radiation isocurvature leads to spatial variation in the primordial abundances of helium and deuterium due to spatial variation in $N_{rm eff}$ during Big Bang nucleosynthesis. We use the result to constrain the existence of such an isocurvature mode on scales down to $sim 1$ Mpc scales. By measuring the excess variance in the primordial helium to hydrogen and deuterium to hydrogen ratio in different galaxies, we constrain the variance in average isocurvature in a galaxy to be less than $0.13/Delta bar{N}_{rm eff}$ at 95% confidence. Here $Delta bar{N}_{rm eff}$ is the spatially averaged increase in $N_{rm eff}$ due to the additional dark radiation component.
Dark radiation (DR) appears as a new physics candidate in various scenarios beyond the Standard Model. While it is often assumed that perturbations in DR are adiabatic, they can easily have an isocurvature component if more than one field was present during inflation, and whose decay products did not all thermalize with each other. By implementing the appropriate isocurvature initial conditions (IC), we derive the constraints on both uncorrelated and correlated DR density isocurvature perturbations from the full Planck 2018 data alone, and also in combination with other cosmological data sets. Our study on free-streaming DR (FDR) updates and generalizes the existing bound on neutrino density isocurvature perturbations by including a varying number of relativistic degrees of freedom, and for coupled DR (CDR) isocurvature, we derive the first bound. We also show that for CDR qualitatively new physical effects arise compared to FDR. One such effect is that for isocurvature IC, FDR gives rise to larger CMB anisotropies compared to CDR -- contrary to the adiabatic case. More generally, we find that a blue-tilt of DR isocurvature spectrum is preferred. This gives rise to a larger value of the Hubble constant $H_0$ compared to the standard $Lambda$CDM+$Delta N_{rm eff}$ cosmology with adiabatic spectra and relaxes the $H_0$ tension.
Non-Gaussianity may exist in the CDM isocurvature perturbation. We provide general expressions for the bispectrum and trispectrum of both adiabatic and isocurvature pertubations. We apply our result to the QCD axion case, and found a consistency relation between the coefficients of the bispectrum and trispectrum : tau_{NL}^(iso)~10^3 [f_{NL}^(iso)]^{4/3}, if the axion is dominantly produced by quantum fluctuation. Thus future observations of the trispectrum, as well as the bispectrum, will be important for understanding the origin of the CDM and baryon asymmetry.
Baryon Acoustic Oscillation (BAO) surveys will be a leading method for addressing the dark energy challenge in the next decade. We explore in detail the effect of allowing for small amplitude admixtures of general isocurvature perturbations in addition to the dominant adiabatic mode. We find that non-adiabatic initial conditions leave the sound speed unchanged but instead excite different harmonics. These harmonics couple differently to Silk damping, altering the form and evolution of acoustic waves in the baryon-photon fluid prior to decoupling. This modifies not only the scale on which the sound waves imprint onto the baryon distribution, which is used as the standard ruler in BAO surveys, but also the shape, width and height of the BAO peak. We discuss these effects in detail and show how more general initial conditions impact our interpretation of cosmological data in dark energy studies. We find that the inclusion of these additional isocurvature modes leads to an increase in the Dark Energy Task Force Figure of merit by 140% and 60% for the BOSS and ADEPT experiments respectively when considered in conjunction with Planck data. We also show that the incorrect assumption of adiabaticity has the potential to bias our estimates of the dark energy parameters by $3sigma$ ($1sigma$) for a single correlated isocurvature mode, and up to $8sigma$ ($3sigma$) for three correlated isocurvature modes in the case of the BOSS (ADEPT) experiment. We find that the use of the large scale structure data in conjunction with CMB data improves our ability to measure the contributions of different modes to the initial conditions by as much as 100% for certain modes in the fully correlated case.
We explore the correlations between primordial non-Gaussianity and isocurvature perturbation. We sketch the generic relation between the bispectrum of the curvature perturbation and the cross-correlation power spectrum in the presence of explicit couplings between the inflaton and another light field which gives rise to isocurvature perturbation. Using a concrete model of a Peccei-Quinn type field with generic gravitational couplings, we illustrate explicitly how the primordial bispectrum correlates with the cross-correlation power spectrum. Assuming the resulting fnl ~ O(1), we find that the form of the correlation depends mostly upon the inflation model but only weakly on the axion parameters, even though fnl itself does depend heavily on the axion parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا