Do you want to publish a course? Click here

Atomic frequency comb memory with spin wave storage in 153Eu3+:Y2SiO5

218   0   0.0 ( 0 )
 Added by Nuala Timoney
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

153Eu3+:Y2SiO5 is a very attractive candidate for a long lived, multimode quantum memory due to the long spin coherence time (~15 ms), the relatively large hyperfine splitting (100 MHz) and the narrow optical homogeneous linewidth (~100 Hz). Here we show an atomic frequency comb memory with spin wave storage in a promising material 153Eu3+:Y2SiO5, reaching storage times slightly beyond 10 {mu}s. We analyze the efficiency of the storage process and discuss ways of improving it. We also measure the inhomogeneous spin linewidth of 153Eu3+:Y2SiO5, which we find to be 69 pm 3 kHz. These results represent a further step towards realising a long lived multi mode solid state quantum memory.



rate research

Read More

83 - D. Main , T. M. Hird , S. Gao 2020
We demonstrate coherent storage and retrieval of pulsed light using the atomic frequency comb quantum memory protocol in a room temperature alkali vapour. We utilise velocity-selective optical pumping to prepare multiple velocity classes in the $F=4$ hyperfine ground state of caesium. The frequency spacing of the classes is chosen to coincide with the $F=4 - F=5$ hyperfine splitting of the $6^2$P$_{3/2}$ excited state resulting in a broadband periodic absorbing structure consisting of two usually Doppler-broadened optical transitions. Weak coherent states of duration $2,mathrm{ns}$ are mapped into this atomic frequency comb with pre-programmed recall times of $8,mathrm{ns}$ and $12,mathrm{ns}$, with multi-temporal mode storage and recall demonstrated. Utilising two transitions in the comb leads to an additional interference effect upon rephasing that enhances the recall efficiency.
We demonstrate efficient and reversible mapping of a light field onto a thulium-doped crystal using an atomic frequency comb (AFC). Thanks to an accurate spectral preparation of the sample, we reach an efficiency of 9%. Our interpretation of the data is based on an original spectral analysis of the AFC. By independently measuring the absorption spectrum, we show that the efficiency is both limited by the available optical thickness and the preparation procedure at large absorption depth for a given bandwidth. The experiment is repeated with less than one photon per pulse and single photon counting detectors. We clearly observe that the AFC protocol is compatible with the noise level required for weak quantum field storage.
We suggest an all-optical scheme for the storage, retrieval and processing of a single-photon wave packet through its off-resonant Raman interaction with a series of coherent control beams. These control beams, each with distinct carrier frequency, are distributed along the way of single-photon propagation, thus effectively forming a gradient absorption structure which can be controlled in various ways to achieve different single-photon processing functionalities. Such a controllable frequency comb is a hybrid of Raman, gradient echo memory (GEM) and atomic frequency comb (AFC) methods, therefore demonstrates many of their advantages all together in one.
145 - N. Timoney , I. Usmani , P. Jobez 2013
A long-lived quantum memory is a firm requirement for implementing a quantum repeater scheme. Recent progress in solid-state rare-earth-ion-doped systems justifies their status as very strong candidates for such systems. Nonetheless an optical memory based on spin-wave storage at the single-photon-level has not been shown in such a system to date, which is crucial for achieving the long storage times required for quantum repeaters. In this letter we show that it is possible to execute a complete atomic frequency comb (AFC) scheme, including spin-wave storage, with weak coherent pulses of $bar{n} = 2.5 pm 0.6$ photons per pulse. We discuss in detail the experimental steps required to obtain this result and demonstrate the coherence of a stored time-bin pulse. We show a noise level of $(7.1 pm 2.3)10^{-3}$ photons per mode during storage, this relatively low-noise level paves the way for future quantum optics experiments using spin-waves in rare-earth-doped crystals.
Future multi-photon applications of quantum optics and quantum information science require quantum memories that simultaneously store many photon states, each encoded into a different optical mode, and enable one to select the mapping between any input and a specific retrieved mode during storage. Here we show, with the example of a quantum repeater, how to employ spectrally-multiplexed states and memories with fixed storage times that allow such mapping between spectral modes. Furthermore, using a Ti:Tm:LiNbO3 waveguide cooled to 3 Kelvin, a phase modulator, and a spectral filter, we demonstrate storage followed by the required feed-forward-controlled frequency manipulation with time-bin qubits encoded into up to 26 multiplexed spectral modes and 97% fidelity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا