No Arabic abstract
We study theoretically and experimentally the frequency and temperature dependence of resistivity noise in semiconductor heterostructures delta-doped by Mn. The resistivity noise is observed to be non-monotonous as a function of frequency. As a function of temperature, the noise increases by two orders of magnitude for a resistivity increase of about 50%. We study two possible sources of resistivity noise -- dynamic spin fluctuations and charge fluctuations, and find that dynamic spin fluctuations are more relevant for the observed noise data. The frequency and temperature dependence of resistivity noise provide important information on the nature of the magnetic interactions. In particular, we show how noise measurements can help resolve a long standing debate on whether the Mn-doped GaAs is an p-d Zener/RKKY or double exchange ferromagnet. Our analysis includes the effect of different kinds of disorder such as spin-glass type of interactions and a site-dilution type of disorder. We find that the resistivity noise in these structures is well described by a disordered RKKY ferromagnet model dynamics with a conserved order parameter.
Two complementary effects modify the GHz magnetization dynamics of nanoscale heterostructures of ferromagnetic and normal materials relative to those of the isolated magnetic constituents: On the one hand, a time-dependent ferromagnetic magnetization pumps a spin angular-momentum flow into adjacent materials and, on the other hand, spin angular momentum is transferred between ferromagnets by an applied bias, causing mutual torques on the magnetizations. These phenomena are manifestly nonlocal: they are governed by the entire spin-coherent region that is limited in size by spin-flip relaxation processes. We review recent progress in understanding the magnetization dynamics in ferromagnetic heterostructures from first principles, focusing on the role of spin pumping in layered structures. The main body of the theory is semiclassical and based on a mean-field Stoner or spin-density--functional picture, but quantum-size effects and the role of electron-electron correlations are also discussed. A growing number of experiments support the theoretical predictions. The formalism should be useful to understand the physics and to engineer the characteristics of small devices such as magnetic random-access memory elements.
We theoretically study the recently observed tunnel-barrier-enhanced dc voltage signals generated by magnetization precession in magnetic tunnel junctions. While the spin pumping is suppressed by the high tunneling impedance, two complimentary processes are predicted to result in a sizable voltage generation in ferromagnet (F)|insulator (I)|normal-metal (N) and F|I|F junctions, with one ferromagnet being resonantly excited. Magnetic dynamics in F|I|F systems induces a robust charge pumping, translating into voltage in open circuits. In addition, dynamics in a single ferromagnetic layer develops longitudinal spin accumulation inside the ferromagnet. A tunnel barrier then acts as a nonintrusive probe that converts the spin accumulation into a measurable voltage. Neither of the proposed mechanisms suffers from spin relaxation, which is typically fast on the scale of the exponentially slow tunneling rates. The longitudinal spin-accumulation buildup, however, is very sensitive to the phenomenological ingredients of the spin-relaxation picture.
Narrow-gap higher mobility semiconducting alloys In_{1-x}Mn_{x}Sb were synthesized in polycrystalline form and their magnetic and transport properties have been investigated. Ferromagnetic response in In_{0.98}Mn_{0.02}Sb was detected by the observation of clear hysteresis loops up to room temperature in direct magnetization measurements. An unconventional (reentrant) magnetization versus temperature behavior has been found. We explained the observed peculiarities within the frameworks of recent models which suggest that a strong temperature dependence of the carrier density is a crucial parameter determining carrier-mediated ferromagnetism of (III,Mn)V semiconductors. The correlation between magnetic states and transport properties of the sample has been discussed. The contact spectroscopy method is used to investigate a band structure of (InMn)Sb near the Fermi level. Measurements of the degree of charge current spin polarization have been carried out using the point contact Andreev reflection (AR) spectroscopy. The AR data are analyzed by introducing a quasiparticle spectrum broadening, which is likely to be related to magnetic scattering in the contact. The AR spectroscopy data argued that at low temperature the sample is decomposed on metallic ferromagnetic clusters with relatively high spin polarization of charge carriers (up to 65% at 4.2K) within a cluster.
We study experimentally and theoretically the effects of disorder, nonlinear screening, and magnetism in semiconductor heterostructures containing a $delta$-layer of Mn, where the charge carriers are confined within a quantum well and hence both ferromagnetism and transport are two-dimensional (2D) and differ qualitatively from their bulk counterparts. Anomalies in the electrical resistance observed in both metallic and insulating structures can be interpreted as a signature of significant ferromagnetic correlations. The insulating samples turn out to be the most interesting as they can give us valuable insights into the mechanisms of ferromagnetism in these heterostructures. At low charge carrier densities, we show how the interplay of disorder and nonlinear screening can result in the organization of the carriers in the 2D transport channel into charge droplets separated by insulating barriers. Based on such a droplet picture and including the effect of magnetic correlations, we analyze the transport properties of this set of droplets, compare it with experimental data, and find a good agreement between the model calculations and experiment. Our analysis shows that the peak or shoulder-like features observed in temperature dependence of resistance of 2D heterostructures $delta$-doped by Mn lie significantly below the Curie temperature $T_{C}$ unlike the three-dimensional case, where it lies above and close to $T_{C}$. We also discuss the consequences of our description for understanding the mechanisms of ferromagnetism in the heterostructures under study.
Confined polar optical phonons are studied in a semiconductor double heterostructure (SDH) by means of a generalization of a theory developed some years ago and based on a continuous medium model. The treatment considers the coupling of electro-mechanical oscillations and involves dispersive phonons. This approach has provided results beyond the usually applied dielectric continuum models, where just the electric aspect of the oscillations is analyzed. In the previous works on the subject the theory included phonon dispersion within a quadratic (parabolic) approximation, while presently linear contributions were added by a straightforward extension of the fundamental equations. The generalized version of the mentioned theoretical treatment leads to a description of long wavelength polar optical phonons showing a closer agreement with experimental data and with calculations along atomistic models. This is particularly important for systems where the linear contribution to dispersion becomes predominant. We present a systematic derivation of the underlying equations, their solutions for the bulk and SDH cases, providing us a complete description of the dispersive modes and the associated electron-phonon Hamiltonian. The results obtained are applied to the case of a EuS/PbS/EuS quantum-well.