Do you want to publish a course? Click here

The Spitzer Spectroscopic Survey of S-type Stars

141   0   0.0 ( 0 )
 Added by Kristof Smolders
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

S-type AGB stars are thought to be in the transitional phase between M-type and C-type AGB stars. Because of their peculiar chemical composition, one may expect a strong influence of the stellar C/O ratio on the molecular chemistry and the mineralogy of the circumstellar dust. In this paper, we present a large sample of 87 intrinsic galactic S-type AGB stars, observed at infrared wavelengths with the Spitzer Space Telescope, and supplemented with ground-based optical data. On the one hand, we derive the stellar parameters from the optical spectroscopy and photometry, using a grid of model atmospheres. On the other, we decompose the infrared spectra to quantify the flux-contributions from the different dust species. Finally, we compare the independently determined stellar parameters and dust properties. For the stars without significant dust emission, we detect a strict relation between the presence of SiS absorption in the Spitzer spectra and the C/O ratio of the stellar atmosphere. These absorption bands can thus be used as an additional diagnostic for the C/O ratio. For stars with significant dust emission, we define three groups, based on the relative contribution of certain dust species to the infrared flux. We find a strong link between group-membership and C/O ratio. We show that these groups can be explained by assuming that the dust-condensation can be cut short before silicates are produced, while the remaining free atoms and molecules can then form the observed magnesium sulfides or the carriers of the unidentified 13 and 20 micron features. Finally, we present the detection of emission features attributed to molecules and dust characteristic to C-type stars, such as molecular SiS, hydrocarbons and magnesium sulfide grains. We show that we often detect magnesium sulfides together with molecular SiS and we propose that it is formed by a reaction of SiS molecules with Mg.



rate research

Read More

The Kepler space mission provided near-continuous and high-precision photometry of about 207,000 stars, which can be used for asteroseismology. However, for successful seismic modelling it is equally important to have accurate stellar physical parameters. Therefore, supplementary ground-based data are needed. We report the results of the analysis of high-resolution spectroscopic data of A- and F-type stars from the Kepler field, which were obtained with the HERMES spectrograph on the Mercator telescope. We determined spectral types, atmospheric parameters and chemical abundances for a sample of 117 stars. Hydrogen Balmer, Fe I, and Fe II lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. The atmospheric parameters obtained were compared with those from the Kepler Input Catalogue (KIC), confirming that the KIC effective temperatures are underestimated for A stars. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The analysed sample comprises stars with approximately solar chemical abundances, as well as chemically peculiar stars of the Am, Ap, and Lambda Boo types. The distribution of the projected rotational velocity, Vsini, is typical for A and F stars and ranges from 8 to about 280 km/s, with a mean of 134 km/s.
We have analysed high-resolution spectra of 28 A and 22 F stars in the Kepler field, observed with the FIES spectrograph at the Nordic Optical Telescope. We provide spectral types, atmospheric parameters and chemical abundances for 50 stars. Balmer, Fe I, and Fe II lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The stars analysed include chemically peculiar stars of the Am and Lambda Boo types, as well as stars with approximately solar chemical abundances. The wide distribution of projected rotational velocity, Vsini, is typical for A and F stars. The microturbulence velocities obtained are typical for stars in the observed temperature and surface gravity ranges. Moreover, we affirm the results of Niemczura et al., that Am stars do not have systematically higher microturbulent velocities than normal stars of the same temperature.
The Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) provides a new sample of 101 star-forming galaxies at z < 0.2 with unprecedented multi-wavelength coverage. New mid- to far-infrared spectroscopy from the Spitzer Space Telescope is added to a rich suite of previous imaging and spectroscopy, including ROSAT, Galaxy Evolution Explorer, Sloan Digital Sky Survey, Two Micron All Sky Survey, and Spitzer/SWIRE. Sample selection ensures an even coverage of the full range of normal galaxy properties, spanning two orders of magnitude in stellar mass, color, and dust attenuation. In this paper we present the SSGSS data set, describe the science drivers, and detail the sample selection, observations, data reduction, and quality assessment. Also in this paper, we compare the shape of the thermal continuum and the degree of silicate absorption of these typical, star-forming galaxies to those of starburst galaxies. We investigate the link between star formation rate, infrared luminosity, and total polycyclic aromatic hydrocarbon luminosity, with a view to calibrating the latter for spectral energy distribution models in photometric samples and at high redshift. Last, we take advantage of the 5-40 micron spectroscopic and far-infrared photometric coverage of this sample to perform detailed fitting of the Draine et al. dust models, and investigate the link between dust mass and star formation history and active galactic nucleus properties.
Aims: We present a compilation of spectroscopic data from a survey of 144 chromospherically active young stars in the solar neighborhood which may be used to investigate different aspects of the formation and evolution of the solar neighborhood in terms of kinematics and stellar formation history. The data have already been used by us in several studies. With this paper, we make all these data accessible to the scientific community for future studies on different topics. Methods: We performed spectroscopic observations with echelle spectrographs to cover the entirety of the optical spectral range simultaneously. Standard data reduction was performed with the IRAF ECHELLE package. We applied the spectral subtraction technique to reveal chromospheric emission in the stars of the sample. The equivalent width of chromospheric emission lines was measured in the subtracted spectra and then converted to fluxes using equivalent width-flux relationships. Radial and rotational velocities were determined by the cross-correlation technique. Kinematics, equivalent widths of the lithium line 6707.8 angstroms and spectral types were also determined. Results: A catalog of spectroscopic data is compiled: radial and rotational velocities, space motion, equivalent widths of optical chromospheric activity indicators from Ca II H & K to the calcium infrared triplet and the lithium line in 6708 angstroms. Fluxes in the chromospheric emission lines and RHK are also determined for each observation of star in the sample. We used these data to investigate the emission levels of our stars. The study of the Halpha emission line revealed the presence of two different populations of chromospheric emitters in the sample, clearly separated in the log F(Halpha)/Fbol - (V-J) diagram.
Here we present the discovery of 895 s-process-rich candidates from 454,180 giant stars observed by the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) using a data-driven approach. This sample constitutes the largest number of s-process enhanced stars ever discovered. Our sample includes 187 s-process-rich candidates that are enhanced in both barium and strontium, 49 stars with significant barium enhancement only and 659 stars that show only a strontium enhancement. Most of the stars in our sample are in the range of effective temperature and log g typical of red giant branch (RGB) populations, which is consistent with our observational selection bias towards finding RGB stars. We estimate that only a small fraction (0.5 per cent) of binary configurations are favourable for s-process enriched stars. The majority of our s-process-rich candidates (95 per cent) show strong carbon enhancements, whereas only five candidates (less than 3 percent) show evidence of sodium enhancement. Our kinematic analysis reveals that 97 percent of our sample are disc stars, with the other 3 percent showing velocities consistent with the Galactic halo. The scaleheight of the disc is estimated to be zh=0.634kpc, comparable with values in the literature. A comparison with the yields from asymptotic giant branch (AGB) models suggests that the main neutron source responsible for the Ba and Sr enhancements is the 13C(alpha,n)16O reaction. We conclude that the s-process-rich candidates may have received their overabundances via mass transfer from a previous ABG companion with an initial mass in the range 1-3Msun.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا