Do you want to publish a course? Click here

Lattice formulation of two-dimensional N=(2,2) super Yang-Mills with SU(N) gauge group

103   0   0.0 ( 0 )
 Added by Issaku Kanamori
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We propose a lattice model for two-dimensional SU(N) N=(2,2) super Yang-Mills model. We start from the CKKU model for this system, which is valid only for U(N) gauge group. We give a reduction of U(1) part keeping a part of supersymmetry. In order to suppress artifact vacua, we use an admissibility condition.



rate research

Read More

214 - Fumihiko Sugino 2009
We construct a lattice model for two-dimensional N=(2,2) supersymmetric QCD (SQCD), with the matter multiplets belonging to the fundamental or anti-fundamental representation of the gauge group U(N) or SU(N). The construction is based on the topological field theory (twisted supercharge) formulation and exactly preserves one supercharge along the line of the papers [1]--[4] for pure supersymmetric Yang-Mills theories. In order to avoid the species doublers of the matter multiplets, we introduce the Wilson terms and the model is defined for the case of the number of the fundamental matters (n_{+}) equal to that of the anti-fundamental matters (n_{-}). If some of the matter multiplets decouple from the theory by sending the corresponding anti-holomorphic twisted masses to the infinity, we can analyze the general n_{+} eq n_{-} case, although the lattice model is defined for n_{+} =n_{-}. By computing the anomaly of the U(1)_A R-symmetry in the lattice perturbation, we see that the decoupling is achieved and the anomaly for n_{+} eq n_{-} is correctly obtained.
We study the two-dimensional Yang--Mills theory with four supercharges in the large-$N$ limit. By using thermal boundary conditions, we analyze the internal energy and the distribution of scalars. We compare their behavior to the maximally supersymmetric case with sixteen supercharges, which is known to admit a holographic interpretation. Our lattice results for the scalar distribution show no visible dependence on $N$ and the energy at strong coupling appears independent of temperature.
123 - A. Hietanen , R. Narayanan 2010
We study four dimensional large-N SU(N) Yang-Mills theory coupled to adjoint overlap fermions on a single site lattice. Lattice simulations along with perturbation theory show that the bare quark mass has to be taken to zero as one takes the continuum limit in order to be in the physically relevant center-symmetric phase. But, it seems that it is possible to take the continuum limit with any renormalized quark mass and still be in the center-symmetric physics. We have also conducted a study of the correlations between Polyakov loop operators in different directions and obtained the range for the Wilson mass parameter that enters the overlap Dirac operator.
119 - Yoshio Kikukawa 2008
In this paper, we introduce the overlap Dirac operator, which satisfies the Ginsparg-Wilson relation, to the matter sector of two-dimensional N=(2,2) lattice supersymmetric QCD (SQCD) with preserving one of the supercharges. It realizes the exact chiral flavor symmetry on the lattice, to make possible to define the lattice action for general number of the flavors of fundamental and anti-fundamental matter multiplets and for general twisted masses. Furthermore, superpotential terms can be introduced with exact holomorphic or anti-holomorphic structure on the lattice. We also consider the lattice formulation of matter multiplets charged only under the central U(1) (the overall U(1)) of the gauge group G=U(N), and then construct lattice models for gauged linear sigma models with exactly preserving one supercharge and their chiral flavor symmetry.
135 - David Schaich 2015
Non-perturbative investigations of $mathcal N = 4$ supersymmetric Yang--Mills theory formulated on a space-time lattice have advanced rapidly in recent years. Large-scale numerical calculations are currently being carried out based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing. A recent development is the creation of an improved lattice action through a new procedure to regulate flat directions in a manner compatible with this supersymmetry, by modifying the moduli equations. In this proceedings I briefly summarize this new procedure and discuss the parameter space of the resulting improved action that is now being employed in numerical calculations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا