Automation of the filament tracking in the framework of the HELIO project


Abstract in English

We present a new method to automatically track filaments over the solar disk. The filaments are first detected on Meudon Spectroheliograph H{alpha} images of the Sun, applying the technique developed by Fuller, Aboudarham, and Bentley (Solar phys. 227, 61, 2005). This technique combines cleaning processes, image segmentation based on region growing, and morphological parameter ex- traction, including the determination of filament skeletons. The coordinates of the skeleton pixels, given in a heliocentric system, are then converted to a more appropriate reference frame that follows the rotation of the Sun surface. In such a frame, a co-rotating filament is always located around the same position, and its skeletons (extracted from each image) are thus spatially close, forming a group of adjacent features. In a third step, the shape of each skeleton is compared with its neighbours using a curve-matching algorithm. This step will permit us to define the probability [P ] that two close filaments in the co-rotating frame are actually the same one observed on two different images. At the end, the pairs of features, for which the corresponding probability is greater than a threshold value, are associated using tracking identification indexes.On a representative sample of filaments, the good agreement between automated and manual tracking confirms the reliability of the technique to be applied on large data sets. Especially, this code is already used in the framework of the Heliophysics Integrated Observatory (HELIO) to populate a catalogue dedicated to solar and heliospheric features (HFC). An extension of this method to others filament observations, and possibly the sunspots, faculae, and coronal holes tracking can be also envisaged.

Download