Do you want to publish a course? Click here

Spin-orbit coupling induced fractionalized Skyrmion excitations in rotating and rapidly quenched spin-1 Bose-Einstein condensates

302   0   0.0 ( 0 )
 Added by Shu-Wei Song
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the fractionalized Skyrmion excitations induced by spin-orbit coupling in rotating and rapidly quenched spin-1 Bose-Einstein condensates. Our results show that the fractionalized Skyrmion excitation depends on the combination of spin-orbit coupling and rotation, and it originates from a dipole structure of spin which is always embedded in three vortices constructed by each condensate component respectively. When spin-orbit coupling is larger than a critical value, the fractionalized Skyrmions encircle the center with one or several circles to form a radial lattice, which occurs even in the strong ferromagnetic/antiferromagnetic condensates. We can use both the spin-orbit coupling and the rotation to adjust the radial lattice. The realization and the detection of the fractionalized Skyrmions are compatible with current experimental technology.



rate research

Read More

We investigate phase separation and hidden vortices in spin-orbit coupled ferromagnetic BoseEinstein condensates with rotation and Rabi coupling. The hidden vortices are invisible in density distribution but are visible in phase distribution, which can carry angular momentum like the ordinary quantized vortices. In the absence of the rotation, we observe the phase separation induced by the spin-orbit coupling and determine the entire phase diagram of the existence of phase separation. For the rotation case, in addition to the phase separation, we demonstrate particularly that the spin-orbit coupling can result in the hidden vortices and hidden vortex-antivortex pairs. The corresponding entire phase diagrams are determined, depending on the interplay of the spin-orbit coupling strength, the rotation frequency, and Rabi frequency, which reveals the critical condition of the occurrence of the hidden vortices and vortex-antivortex pairs. The hidden vortices here are proved to be long-lived in the time scale of experiment by the dynamic analysis. These findings not only provide a clear illustration of the phase separation in spin-orbit coupled spinor Bose-Einstein condensates, but also open a new direction for investigating the hidden vortices in high-spin quantum system.
We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topological defects have been found. These systems exhibit both superfluidity and magnetic crystalline ordering and they could be realized experimentally by imparting angular momentum in the condensate.
198 - S.-W. Su , C.-H. Hsueh , I.-K. Liu 2011
We investigate the spontaneous generation of crystallized topological defects via the combining effects of fast rotation and rapid thermal quench on the spin-1 Bose-Einstein condensates. By solving the stochastic projected Gross-Pitaevskii equation, we show that, when the system reaches equilibrium, a hexagonal lattice of skyrmions, and a square lattice of half-quantized vortices can be formed in a ferromagnetic and antiferromagnetic spinor BEC, respetively, which can be imaged by using the polarization-dependent phase-contrast method.
Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. However, there is no study of SOC atomic-molecular BECs so far. Here, we find a novel way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin dependent photoassociation and Raman coupling, which can control the formation and distribution of a new type of topological excitation -- carbon-dioxide-like Skyrmion. This Skyrmion is formed by two half-Skyrmions of molecular BECs coupling with one Skyrmion of atomic BECs, where the two half-Skyrmions locates at both sides of one Skyrmion, which can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments.
211 - Qing Sun , Lin Wen , W.-M. Liu 2014
Motivated by a goal of realizing spin-orbit coupling (SOC) beyond one-dimension (1D), we propose and analyze a method to generate an effective 2D SOC in bilayer BECs with laser-assisted inter-layer tunneling. We show that an interplay between the inter-layer tunneling, SOC and intra-layer atomic interaction can give rise to diverse ground state configurations. In particular, the system undergoes a transition to a new type of stripe phase which spontaneously breaks the time-reversal symmetry. Different from the ordinary Rashba-type SOC, a fractionalized skyrmion lattice emerges spontaneously in the bilayer system without external traps. Furthermore, we predict the occurrence of a tetracritical point in the phase diagram of the bilayer BECs, where four different phases merge together. The origin of the emerging different phases is elucidated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا