No Arabic abstract
Gamma-Ray Bursts can provide information about star formation at high redshifts. Even in the absence of a optical/near-infrared/radio afterglow, the high detection rate of X-ray afterglows by swift/XRT and its localization precision of 2-3 arcsec facilitates the identification and study of GRB host galaxies. We focus on the search for the host galaxies of a sample of 17 bursts with XRT error circles but no detected long-wavelength afterglow. Three of these events can also be classified as truly dark bursts: the observed upper limit on the optical flux of the afterglow was less than expected based on the X-ray flux. Our study is based on deep R and K-band observations performed with ESO/VLT instruments, supported by GROND and NEWFIRM. To be conservative, we searched for host galaxies in an area with a radius twice the 90% swift/XRT error circle. For 15 of the 17 bursts we find at least one galaxy inside the doubled XRT error circle. In seven cases we discover extremely red objects in the error circles. The most remarkable case is the host of GRB 080207 which as a colour of R-K~4.7 mag (AB), one of the reddest galaxies ever associated with a GRB. As a by-product of our study we identify the optical afterglow of GRB 070517A. Optically dim afterglows result from cosmological Lyman drop out and dust extinction, but the former process is only equired for a minority of cases (<1/3). Extinction by dust in the host galaxies might explain all other events. Thereby, a seemingly non-negligible fraction of these hosts are globally dust-enshrouded, extremely red galaxies. This suggests that bursts with optically dim afterglows trace a subpopulation of massive starburst galaxies, which are markedly different from the main body of the GRB host galaxy population, namely the blue, subluminous, compact galaxies.
Due to their extreme luminosities, gamma-ray bursts (GRBs) can be detected in hostile regions of galaxies, nearby and at very high redshift, making them important cosmological probes. The investigation of galaxies hosting long-duration GRBs (whose progenitor is a massive star) demonstrated their connection to star formation. Still, the link to the total galaxy population is controversial, mainly because of the small-number statistics: ~ 1,100 are the GRBs detected so far, ~ 280 those with measured redshift, and ~ 70 the hosts studied in detail. These are typically low-redshift (z < 1.5), low luminosity, metal poor, and star-forming galaxes. On the other hand, at 1.5< z <4, massive, metal rich and dusty, interacting galaxies are not uncommon. The most distant population (z > 4) is poorly explored, but the deep limits reached point towards very small and star-forming objects, similar to the low-z population. This `back to the future behavior is a natural consequence of the connection of long GRBs to star formation in young regions of the universe.
We report on the results of R band observations of the error box of the gamma-ray burst of August 28, 1997, made between 4 hours and 8 days after this burst occurred. No counterpart was found varying by more than 0.2 magnitudes down to R = 23.8. We discuss the consequences of this non-detection for relativistic blast wave models of gamma-ray bursts, and the possible effect of redshift on the relation between optical absorption and the low-energy cut off in the X-ray afterglow spectrum.
As soon as their extragalactic origins were established, the hope to make Gamma - Ray Bursts (GRBs) standardizeable candles to probe the very high - z universe has opened the search for scaling relations between redshift independent observable quantities and distance dependent ones. Although some remarkable success has been achieved, the empirical correlations thus found are still affected by a significant intrinsic scatter which downgrades the precision in the inferred GRBs Hubble diagram. We investigate here whether this scatter may come from fitting together objects belonging to intrinsically different classes. To this end, we rely on a cladistics analysis to partition GRBs in homogenous families according to their rest frame properties. Although the poor statistics prevent us from drawing a definitive answer, we find that both the intrinsic scatter and the coefficients of the $E_{peak}$,-,$E_{iso}$ and $E_{peak}$,-,$L$ correlations significantly change depending on which subsample is fitted. It turns out that the fit to the full sample leads to a scaling relation which approximately follows the diagonal of the region delimited by the fits to each homogenous class. We therefore argue that a preliminary identification of the class a GRB belongs to is necessary in order to select the right scaling relation to be used in order to not bias the distance determination and hence the Hubble diagram.
GRB-selected galaxies are broadly known to be faint, blue, young, star-forming dwarf galaxies. This insight, however, is based in part on heterogeneous samples of optically selected, lower-redshift galaxies. To study the statistical properties of GRB-selected galaxies we here introduce The Optically Unbiased GRB Host (TOUGH) complete sample of 69 X-ray selected Swift GRB host galaxies spanning the redshift range 0.03-6.30 and summarise the first results of a large observational survey of these galaxies.
We present a preliminary data release from our multi-year campaign at Keck Observatory to study the host galaxies of a large sample of Swift-era gamma-ray bursts via multi-color ground-based optical imaging and spectroscopy. With over 160 targets observed to date (and almost 100 host detections, most of which have not previously been reported in the literature) our effort represents the broadest GRB host survey to date. While targeting was heterogeneous, our observations span the known diversity of GRBs including short bursts, long bursts, spectrally soft GRBs (XRFs), ultra-energetic GRBs, X-ray faint GRBs, dark GRBs, SN-GRBs, and other sub-classes. We also present a preview of our database (currently available online via a convenient web interface) including a catalog of multi-color photometry, redshifts and line IDs. Final photometry and reduced imaging and spectra will be available in the near future.