Do you want to publish a course? Click here

Mathematical modeling of microRNA-mediated mechanisms of translation repression

112   0   0.0 ( 0 )
 Added by Alexander Gorban
 Publication date 2012
  fields Biology
and research's language is English




Ask ChatGPT about the research

MicroRNAs can affect the protein translation using nine mechanistically different mechanisms, including repression of initiation and degradation of the transcript. There is a hot debate in the current literature about which mechanism and in which situations has a dominant role in living cells. The worst, same experimental systems dealing with the same pairs of mRNA and miRNA can provide ambiguous evidences about which is the actual mechanism of translation repression observed in the experiment. We start with reviewing the current knowledge of various mechanisms of miRNA action and suggest that mathematical modeling can help resolving some of the controversial interpretations. We describe three simple mathematical models of miRNA translation that can be used as tools in interpreting the experimental data on the dynamics of protein synthesis. The most complex model developed by us includes all known mechanisms of miRNA action. It allowed us to study possible dynamical patterns corresponding to different miRNA-mediated mechanisms of translation repression and to suggest concrete recipes on determining the dominant mechanism of miRNA action in the form of kinetic signatures. Using computational experiments and systematizing existing evidences from the literature, we justify a hypothesis about co-existence of distinct miRNA-mediated mechanisms of translation repression. The actually observed mechanism will be that acting on or changing the limiting place of the translation process. The limiting place can vary from one experimental setting to another. This model explains the majority of existing controversies reported.



rate research

Read More

According to the `ceRNA hypothesis, microRNAs (miRNAs) may act as mediators of an effective positive interaction between long coding or non-coding RNA molecules, carrying significant potential implications for a variety of biological processes. Here, inspired by recent work providing a quantitative description of small regulatory elements as information-conveying channels, we characterize the effectiveness of miRNA-mediated regulation in terms of the optimal information flow achievable between modulator (transcription factors) and target nodes (long RNAs). Our findings show that, while a sufficiently large degree of target derepression is needed to activate miRNA-mediated transmission, (a) in case of differential mechanisms of complex processing and/or transcriptional capabilities, regulation by a post-transcriptional miRNA-channel can outperform that achieved through direct transcriptional control; moreover, (b) in the presence of large populations of weakly interacting miRNA molecules the extra noise coming from titration disappears, allowing the miRNA-channel to process information as effectively as the direct channel. These observations establish the limits of miRNA-mediated post-transcriptional cross-talk and suggest that, besides providing a degree of noise buffering, this type of control may be effectively employed in cells both as a failsafe mechanism and as a preferential fine tuner of gene expression, pointing to the specific situations in which each of these functionalities is maximized.
149 - Bin Ao , Sheng Zhang , Caiyong Ye 2013
The dynamic behaviors of microRNA and mRNA under external stress are studied with biological experiments and mathematics models. In this study, we developed a mathematic model to describe the biological phenomenon and for the first time reported that, as responses to external stress, the expression levels of microRNA and mRNA sustained oscillation. And the period of the oscillation is much shorter than several reported transcriptional regulation negative feedback loop.
We analyze a system-level model for lytic repression of lambda-phage in E. coli using reliability theory, showing that the repressor circuit comprises 4 redundant components whose failure mode is prophage induction. Our model reflects the specific biochemical mechanisms involved in regulation, including long-range cooperative binding, and its detailed predictions for prophage induction in E. coli under ultra-violet radiation are in good agreement with experimental data.
84 - Jae Kyoung Kim 2016
Circadian (~24hr) clocks are self-sustained endogenous oscillators with which organisms keep track of daily and seasonal time. Circadian clocks frequently rely on interlocked transcriptional- translational feedback loops to generate rhythms that are robust against intrinsic and extrinsic perturbations. To investigate the dynamics and mechanisms of the intracellular feedback loops in circadian clocks, a number of mathematical models have been developed. The majority of the models use Hill functions to describe transcriptional repression in a way that is similar to the Goodwin model. Recently, a new class of models with protein sequestration-based repression has been introduced. Here, we discuss how this new class of models differs dramatically from those based on Hill-type repression in several fundamental aspects: conditions for rhythm generation, robust network designs and the periods of coupled oscillators. Consistently, these fundamental properties of circadian clocks also differ among Neurospora, Drosophila, and mammals depending on their key transcriptional repression mechanisms (Hill-type repression or protein sequestration). Based on both theoretical and experimental studies, this review highlights the importance of careful modeling of transcriptional repression mechanisms in molecular circadian clocks.
The use of mathematical methods for the analysis of chemical reaction systems has a very long history, and involves many types of models: deterministic versus stochastic, continuous versus discrete, and homogeneous versus spatially distributed. Here we focus on mathematical models based on deterministic mass-action kinetics. These models are systems of coupled nonlinear differential equations on the positive orthant. We explain how mathematical properties of the solutions of mass-action systems are strongly related to key properties of the networks of chemical reactions that generate them, such as specif
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا