Do you want to publish a course? Click here

A Helical Cooling Channel System for Muon Colliders

102   0   0.0 ( 0 )
 Added by Katsuya Yonehara
 Publication date 2012
  fields Physics
and research's language is English
 Authors K. Yonehara




Ask ChatGPT about the research

Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6D beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 105 emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.



rate research

Read More

Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.
90 - Katsuya Yonehara 2018
A six-dimensional muon ionization cooling in a helical magnet channel has been studied. The cooling performance which is analytically evaluated by solving the exact Hamiltonian is reproduced in numerical simulation. One of the key beam elements for the helical channel is a dense-hydrogen gas-filled RF cavity which realizes a compact cooling channel. Besides, a beam-induced gas plasma in the cavity can generate a plasma-focusing effect. This will generate extremely small betatron function, which realizes extremely low emittance beam.
54 - Diktys Stratakis 2017
An alternative cooling approach to prevent rf breakdown in magnetic fields is described that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in discrete absorbers and replenishing the momentum loss only in the longitudinal direction through gas-filled rf cavities. The advantage of gas filled cavities is that they can run at high gradients in magnetic fields without breakdown. With this approach, we show that our channel can achieve a decrease of the 6-dimensional phase-space volume by several orders of magnitude. With the aid of numerical simulations, we demonstrate that the transmission of our proposed channel is comparable to that of an equivalent channel with vacuum rf cavities. Finally, we discuss the sensitivity of the channel performance to the choice of gas and operating pressure.
Possible application for muon experiments such as mu2e is discussed of the initial part of the ionization cooling channel originally developed for muon collider. It is shown that with the FNAL Booster as the proton driver the mu2e sensitivity can be increased by two orders of magnitude compared to the presently considered experiment.
55 - M. Bonesini 2016
High brilliance muon beams are needed for future facilities such as a Neutrino Factory, an Higgs-factory or a multi-TeV Muon Collider. The R&D path involves many aspects, of which cooling of the incoming muon beams is essential.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا