Do you want to publish a course? Click here

All-electric qubit control in heavy hole quantum dots via non-Abelian geometric phases

86   0   0.0 ( 0 )
 Added by Jan Carl Budich
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate how non-Abelian geometric phases can be used to universally process a spin qubit in heavy hole quantum dots in the absence of magnetic fields. A time dependent electric quadrupole field is used to perform any desired single qubit operation by virtue of non-Abelian holonomy. During the proposed operations, the degeneracy of the time dependent two level system representing the qubit is not split. Since time reversal symmetry is preserved and hyperfine coupling is known to be weak in spin qubits based on heavy holes, we expect very long coherence times in the proposed setup.

rate research

Read More

We demonstrate the real-time detection of single photogenerated electrons in two different lateral double quantum dots made in AlGaAs/GaAs/AlGaAs quantum wells having a thin or a thick AlGaAs barrier layer. The observed incident laser power and photon energy dependences of the photoelectron detection efficiency both indicate that the trapped photoelectrons are, for the thin barrier sample, predominantly photogenerated in the buffer layer followed by tunneling into one of the two dots, whereas for the thick barrier sample they are directly photogenerated in the well. For the latter, single photoelectron detection after selective excitation of the heavy and light hole state in the dot is well resolved. This ensures the applicability of our quantum well-based quantum dot systems for the coherent transfer from single photon polarization to single electron spin states.
We present measurements on gate-defined double quantum dots in Ge-Si core-shell nanowires, which we tune to a regime with visible shell filling in both dots. We observe a Pauli spin blockade and can assign the measured leakage current at low magnetic fields to spin-flip cotunneling, for which we measure a strong anisotropy related to an anisotropic g-factor. At higher magnetic fields we see signatures for leakage current caused by spin-orbit coupling between (1,1)-singlet and (2,0)-triplet states. Taking into account these anisotropic spin-flip mechanisms, we can choose the magnetic field direction with the longest spin lifetime for improved spin-orbit qubits.
The presence of valley states is a significant obstacle to realizing quantum information technologies in Silicon quantum dots, as leakage into alternate valley states can introduce errors into the computation. We use a perturbative analytical approach to study the dynamics of exchange-coupled quantum dots with valley degrees of freedom. We show that if the valley splitting is large and electrons are not properly initialized to valley eigenstates, then time evolution of the system will lead to spin-valley entanglement. Spin-valley entanglement will also occur if the valley splitting is small and electrons are not initialized to the same valley state. Additionally, we show that for small valley splitting, spin-valley entanglement does not affect measurement probabilities of two-qubit systems; however, systems with more qubits will be affected. This means that two-qubit gate fidelities measured in two-qubit systems may miss the effects of valley degrees of freedom. Our work shows how the existence of valleys may adversely affect multiqubit fidelities even when the system temperature is very low.
120 - Y. Benny , R. Presman , Y.Kodriano 2013
We use temporally resolved intensity cross-correlation measurements to identify the biexciton-exciton radiative cascades in a negatively charged QD. The polarization sensitive correlation measurements show unambiguously that the excited two electron triplet states relax non-radiatively to their singlet ground state via a spin non conserving flip-flop with the ground state heavy hole. We explain this mechanism in terms of resonant coupling between the confined electron states and an LO phonon. This resonant interaction together with the electron-hole exchange interaction provides an efficient mechanism for this, otherwise spin-blockaded, electronic relaxation.
We propose and analyze a novel flopping-mode mechanism for electric dipole spin resonance based on the delocalization of a single electron across a double quantum dot confinement potential. Delocalization of the charge maximizes the electronic dipole moment compared to the conventional single dot spin resonance configuration. We present a theoretical investigation of the flopping-mode spin qubit properties through the crossover from the double to the single dot configuration by calculating effective spin Rabi frequencies and single-qubit gate fidelities. The flopping-mode regime optimizes the artificial spin-orbit effect generated by an external micromagnet and draws on the existence of an externally controllable sweet spot, where the coupling of the qubit to charge noise is highly suppressed. We further analyze the sweet spot behavior in the presence of a longitudinal magnetic field gradient, which gives rise to a second order sweet spot with reduced sensitivity to charge fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا