The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of gamma rays decaying from excited states are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighbouring neutron-deficient Hg nuclei. In addition to the gamma-ray spectroscopy, the alpha decay of this nucleus has been measured yielding superior precision to earlier measurements.
We report four narrow peaks in the $Xi_b^0K^-$ mass spectrum obtained using $pp$ collisions at center-of-mass energies of 7, 8 and 13 TeV, corresponding to a total integrated luminosity of 9 fb$^{-1}$ recorded by the LHCb experiment. Referring to these states by their mass, the mass values are begin{align*} m(Omega_b(6316)^-) &= 6315.64pm0.31pm0.07pm0.50 {rm MeV}, m(Omega_b(6330)^-) &= 6330.30pm0.28pm0.07pm0.50 {rm MeV}, m(Omega_b(6340)^-) &= 6339.71pm0.26pm0.05pm0.50 {rm MeV}, m(Omega_b(6350)^-) &= 6349.88pm0.35pm0.05pm0.50 {rm MeV}, end{align*}where the uncertainties are statistical, systematic and the last is due to the knowledge of the $Xi_b^0$ mass. The natural widths of the three lower mass states are consistent with zero, and the 90% confidence-level upper limits are determined to be ${Gamma(Omega_b(6316)^-)<2.8}$ MeV, ${Gamma(Omega_b(6330)^-)<3.1}$ MeV and ${Gamma(Omega_b(6340)^-)<1.5}$ MeV. The natural width of the $Omega_b(6350)^-$ peak is $1.4^{+1.0}_{-0.8}pm0.1$ MeV, which is 2.5$sigma$ from zero and corresponds to an upper limit of 2.8 MeV. The peaks have local significances ranging from 3.6$sigma$ to 7.2$sigma$. After accounting for the look-elsewhere effect, the significances of the $Omega_b(6316)^-$ and $Omega_b(6330)^-$ peaks are reduced to 2.1$sigma$ and 2.6$sigma$ respectively, while the two higher mass peaks exceed 5$sigma$. The observed peaks are consistent with expectations for excited $Omega_b^-$ resonances.
The first excited state in neutron-rich 23O was observed in a (2p1n) knock-out reaction from 26Ne on a beryllium target at a beam energy of 86 MeV/A. The state is unbound with respect to neutron emission and was reconstructed from the invariant mass from the 22O fragment and the neutron. It is unbound by 45(2) keV corresponding to an excitation energy of 2.8(1) MeV. The non-observation of further resonances implies a predominantly direct reaction mechanism of the employed three-nucleon-removal reaction which suggests the assignment of the observed resonance to be the 5/2+ hole state.
The electric quadrupole transition from the first 2+ state to the ground 0+ state in 18C was studied through lifetime measurement by an upgraded recoil shadow method applied to inelastically scattered radioactive 18C nuclei. The measured mean lifetime is 18.9 +/- 0.9 (stat) +/- 4.4 (syst) ps, corresponding to a B(E2;2+ -> 0+) value of 4.3 +/- 0.2 +/- 1.0 e2fm4, or about 1.5 Weisskopf units. The mean lifetime of the first 2+ state in 16C was remeasured to be 18.0 +/- 1.6 +/- 4.7 ps, about four times shorter than the value reported previously. The discrepancy between the two results was resolved by incorporating the gamma-ray angular distribution measured in this work into the previous measurement. These transition strengths are hindered compared to the empirical transition strengths, indicating that the anomalous hindrance observed in 16C persists in 18C.
A structure is observed in the $B^+K^-$ mass spectrum in a sample of proton--proton collisions at centre-of-mass energies of 7, 8, and 13 TeV, collected with the LHCb detector and corresponding to a total integrated luminosity of 9 fb${}^-1$. The structure is interpreted as the result of overlapping excited $B_s^0$ states. With high significance, a two-peak hypothesis provides a better description of the data than a single resonance. Under this hypothesis the masses and widths of the two states, assuming they decay directly to $B^+K^-$, are determined to be $m_1 = 6063.5 pm 1.2 text{ (stat)} pm 0.8text{ (syst) MeV},$ $Gamma_1 = 26 pm 4 text{ (stat)} pm 4text{ (syst) MeV},$ $m_2 = 6114 pm 3 text{ (stat)} pm 5text{ (syst) MeV},$ $Gamma_2 = 66 pm 18 text{ (stat)} pm 21text{ (syst) MeV}.$ Alternative values assuming a decay through $B^{*+}K^-$, with a missing photon from the $B^{*+} rightarrow B^+gamma$ decay, which are shifted by approximately 45 MeV are also determined. The possibility of a single state decaying in both channels is also considered. The ratio of the total production cross-section times branching fraction of the new states relative to the previously observed $B_{s2}^{*0}$ state is determined to be $0.87 pm 0.15 text{ (stat)} pm 0.19 text{ (syst)}$.
Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Beyond mean-field calculations are in reasonable correspondence with the trends deduced from experiment.