Generalized monogamy of contextual inequalities from the no-disturbance principle


Abstract in English

In this paper we demonstrate that the property of monogamy of Bell violations seen for no-signaling correlations in composite systems can be generalized to the monogamy of contextuality in single systems obeying the Gleason property of no-disturbance. We show how one can construct monogamies for contextual inequalities by using the graph-theoretic technique of vertex decomposition of a graph representing a set of measurements into subgraphs of suitable independence numbers that themselves admit a joint probability distribution. After establishing that all the subgraphs that are chordal graphs admit a joint probability distribution, we formulate a precise graph-theoretic condition that gives rise to the monogamy of contextuality. We also show how such monogamies arise within quantum theory for a single four-dimensional system and interpret violation of these relations in terms of a violation of causality. These monogamies can be tested with current experimental techniques.

Download