Do you want to publish a course? Click here

Sampling from a Gibbs measure with pair interaction by means of PCA

254   0   0.0 ( 0 )
 Added by Elisabetta Scoppola
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the problem of approximate sampling from the finite volume Gibbs measure with a general pair interaction. We exhibit a parallel dynamics (Probabilistic Cellular Automaton) which efficiently implements the sampling. In this dynamics the product measure that gives the new configuration in each site contains a term that tends to favour the original value of each spin. This is the main ingredient that allows to prove that the stationary distribution of the PCA is close in total variation to the Gibbs measure. The presence of the parameter that drives the inertial term mentioned above gives the possibility to control the degree of parallelism of the numerical implementation of the dynamics.



rate research

Read More

We review some recent developments in the study of Gibbs and non-Gibbs properties of transformed n-vector lattice and mean-field models under various transformations. Also, some new results for the loss and recovery of the Gibbs property of planar rotor models during stochastic time evolution are presented.
132 - Jerome Dubail 2010
A good understanding of conformal field theory (CFT) at c=0 is vital to the physics of disordered systems, as well as geometrical problems such as polymers and percolation. Steady progress has shown that these CFTs should be logarithmic, with indecomposable operator product expansions, and indecomposable representations of the Virasoro algebra. In one of the earliest papers on the subject, V. Gurarie introduced a single parameter b to quantify this indecomposability in terms of the logarithmic partner t of the stress energy tensor T. He and A. Ludwig conjectured further that b=-5/8 for polymers and b=5/6 for percolation. While a lot of physics may be hidden behind this parameter - which has also given rise to a lot of discussions - it had remained very elusive up to now, due to the lack of available methods to measure it experimentally or numerically, in contrast say with the central charge. We show in this paper how to overcome the many difficulties in trying to measure b. This requires control of a lattice scalar product, lattice Jordan cells, together with a precise construction of the state L_{-2}|0>. The final result is that b=5/6 for polymers. For percolation, we find that b=-5/8 within an XXZ or supersymmetric representation. In the geometrical representation, we do not find a Jordan cell for L_0 at level two (finite-size Hamiltonian and transfer matrices are fully diagonalizable), so there is no b in this case.
We consider a way of defining quantum Hamiltonians involving particle creation and annihilation based on an interior-boundary condition (IBC) on the wave function, where the wave function is the particle-position representation of a vector in Fock space, and the IBC relates (essentially) the values of the wave function at any two configurations that differ only by the creation of a particle. Here we prove, for a model of particle creation at one or more point sources using the Laplace operator as the free Hamiltonian, that a Hamiltonian can indeed be rigorously defined in this way without the need for any ultraviolet regularization, and that it is self-adjoint. We prove further that introducing an ultraviolet cut-off (thus smearing out particles over a positive radius) and applying a certain known renormalization procedure (taking the limit of removing the cut-off while subtracting a constant that tends to infinity) yields, up to addition of a finite constant, the Hamiltonian defined by the IBC.
Gibbs Phase Rule describes the nature of phase boundaries on phase diagrams, and is a foundational principle in materials thermodynamics. In Gibbs original derivation, he stipulates that the Phase Rule applies only to simple systems--defined to be homogeneous, isotropic, uncharged, and large enough that surface effects can be neglected; and not acted upon by electric, magnetic or gravitational fields. Modern functional materials; spanning nanomaterials, multiferrorics, materials for energy storage and conversion, colloidal crystals, etc.; are decidedly non-simple, leveraging various additional forms of thermodynamic work to achieve their functionality. Here, we extend Gibbs original arguments on phase coexistence to derive a generalized Phase Rule, based in the combinatorial geometry of high-dimensional convex polytopes. The generalized Phase Rule offers a conceptual and mathematical framework to interpret equilibrium and phase coexistence in advanced modern materials.
95 - C. Maes , K. Netocny 2006
The minimum entropy production principle provides an approximative variational characterization of close-to-equilibrium stationary states, both for macroscopic systems and for stochastic models. Analyzing the fluctuations of the empirical distribution of occupation times for a class of Markov processes, we identify the entropy production as the large deviation rate function, up to leading order when expanding around a detailed balance dynamics. In that way, the minimum entropy production principle is recognized as a consequence of the structure of dynamical fluctuations, and its approximate character gets an explanation. We also discuss the subtlety emerging when applying the principle to systems whose degrees of freedom change sign under kinematical time-reversal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا