Do you want to publish a course? Click here

Enhanced solid-state multi-spin metrology using dynamical decoupling

141   0   0.0 ( 0 )
 Added by Linh Pham
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use multi-pulse dynamical decoupling to increase the coherence lifetime (T2) of large numbers of nitrogen-vacancy (NV) electronic spins in room temperature diamond, thus enabling scalable applications of multi-spin quantum information processing and metrology. We realize an order-of-magnitude extension of the NV multi-spin T2 for diamond samples with widely differing spin environments. For samples with nitrogen impurity concentration <~1 ppm, we find T2 > 2 ms, comparable to the longest coherence time reported for single NV centers, and demonstrate a ten-fold enhancement in NV multi-spin sensing of AC magnetic fields.



rate research

Read More

For precision coherent measurements with ensembles of quantum spins the relevant Figure-of-Merit (FOM) is the product of polarized spin density and coherence lifetime, which is generally limited by the dynamics of the spin environment. Here, we apply a coherent spectroscopic technique to characterize the dynamics of the composite solid-state spin environment of Nitrogen-Vacancy (NV) centers in room temperature diamond. For samples of very different NV densities and impurity spin concentrations, we show that NV FOM values can be almost an order of magnitude larger than previously achieved in other room-temperature solid-state spin systems, and within an order of magnitude of the state-of-the-art atomic system. We also identify a new mechanism for suppression of electronic spin bath dynamics in the presence of a nuclear spin bath of sufficient concentration. This suppression could inform efforts to further increase the FOM for solid-state spin ensemble metrology and collective quantum information processing.
We demonstrate that CPMG and XYXY decoupling sequences with non-ideal $pi$ pulses can reduce dipolar interactions between spins of the same species in solids. Our simulations of pulsed electron spin resonance (ESR) experiments show that $pi$ rotations with small ($<$~10%) imperfections refocus instantaneous diffusion. Here, the intractable N-body problem of interacting dipoles is approximated by the average evolution of a single spin in a changing mean field. These calculations agree well with experiments and do not require powerful hardware. Our results add to past attempts to explain similar phenomena in solid state nuclear magnetic resonance (NMR). Although the fundamental physics of NMR are similar to ESR, the larger linewidths in ESR and stronger dipolar interactions between electron spins compared to nuclear spins preclude drawing conclusions from NMR studies alone. For bulk spins, we also find that using XYXY results in less inflation of the deduced echo decay times as compared to decays obtained with CPMG.
Longitudinal relaxation is the process by which an excited spin ensemble decays into its thermal equilibrium with the environment. In solid-state spin systems relaxation into the phonon bath usually dominates over the coupling to the electromagnetic vacuum. In the quantum limit the spin lifetime is determined by phononic vacuum fluctuations. However, this limit was not observed in previous studies due to thermal phonon contributions or phonon-bottleneck processes. Here we use a dispersive detection scheme based on cavity quantum electrodynamics (cQED) to observe this quantum limit of spin relaxation of the negatively charged nitrogen vacancy ($mathrm{NV}^-$) centre in diamond. Diamond possesses high thermal conductivity even at low temperatures, which eliminates phonon-bottleneck processes. We observe exceptionally long longitudinal relaxation times $T_1$ of up to 8h. To understand the fundamental mechanism of spin-phonon coupling in this system we develop a theoretical model and calculate the relaxation time ab initio. The calculations confirm that the low phononic density of states at the $mathrm{NV}^-$ transition frequency enables the spin polarization to survive over macroscopic timescales.
Coherence time is an essential parameter for quantum sensing, quantum information, and quantum computation. In this work, we demonstrate electron spin coherence times as long as 0.1 s for an ensemble of rubidium atoms trapped in a solid parahydrogen matrix. We explore the underlying physics limiting the coherence time. The properties of these matrix isolated atoms are very promising for future applications, including quantum sensing of nuclear spins. If combined with efficient single-atom readout, this would enable NMR and magnetic resonance imaging of single molecules cotrapped with alkali-metal atom quantum sensors within a parahydrogen matrix.
We present measurements of the Berry Phase in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. Our results demonstrate the remarkable degree of coherent control achievable in the presence of a highly complex solid-state environment. We manipulate the spin qubit geometrically by careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting phase via spin-echo interferometry. We find good agreement with Berrys predictions within experimental errors. We also investigated the role of the environment on the geometric phase, and observed that unlike other solid-state qubit systems, the dephasing was primarily dominated by fast radial fluctuations in the path.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا