No Arabic abstract
We investigate theoretically the quantum phase transition (QPT) between the one-channel Kondo (1CK) and two-channel Kondo (2CK) fixed points in a quantum dot coupled to helical edge states of interacting 2D topological insulators (2DTI) with Luttinger parameter $0<K<1$. The model has been studied in Ref. 21, and was mapped onto an anisotropic two-channel Kondo model via bosonization. For K<1, the strong coupling 2CK fixed point was argued to be stable for infinitesimally weak tunnelings between dot and the 2DTI based on a simple scaling dimensional analysis[21]. We re-examine this model beyond the bare scaling dimension analysis via a 1-loop renormalization group (RG) approach combined with bosonization and re-fermionization techniques near weak-coupling and strong-coupling (2CK) fixed points. We find for K -->1 that the 2CK fixed point can be unstable towards the 1CK fixed point and the system may undergo a quantum phase transition between 1CK and 2CK fixed points. The QPT in our model comes as a result of the combined Kondo and the helical Luttinger physics in 2DTI, and it serves as the first example of the 1CK-2CK QPT that is accessible by the controlled RG approach. We extract quantum critical and crossover behaviors from various thermodynamical quantities near the transition. Our results are robust against particle-hole asymmetry for 1/2<K<1.
We study a model of a quantum dot coupled to a quantum Hall edge of the Laughlin state, taking into account short-range interactions between the dot and the edge. This system has been studied experimentally in electron quantum optics in the context of single particle sources. We consider driving the dot out of equilibrium by a time-dependent bias voltage. We calculate the resulting current on the edge by applying the Kubo formula to the bosonized Hamiltonian. The Hamiltonian of this system can also be mapped to the spin-boson model and in this picture, the current can be perturbatively calculated using the non-interacting blip approximation (NIBA). We show that both methods of solution are in fact equivalent. We present numerics demonstrating that the perturbative approaches capture the essential physics at early times, although they fail to capture the charge quantization (or lack thereof) in the current pulses integrated over long times.
We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger Liquids when the electron interaction is stronger than some critical value. In this novel regime, the Kondo effect overwhelms the RKKY interaction over all macroscopic inter-impurity distances. This phenomenon is a direct consequence of the helicity (realized, for instance, at edges of a time-reversal invariant topological insulator) and does not take place in usual (non-helical) Luttinger Liquids.
We study quantum spin Hall insulators with local Coulomb interactions in the presence of boundaries using dynamical mean field theory. We investigate the different influence of the Coulomb interaction on the bulk and the edge states. Interestingly, we discover an edge reconstruction driven by electronic correlations. The reason is that the helical edge states experience Mott localization for an interaction strength smaller than the bulk one. We argue that the significance of this edge reconstruction can be understood by topological properties of the system characterized by a local Chern marker.
The construction and classification of crystalline symmetry protected topological (SPT) phases in interacting bosonic and fermionic systems have been intensively studied in the past few years. Crystalline SPT phases are not only of conceptual importance, but also provide great opportunities towards experimental realization since space group symmetries naturally exist for any realistic material. In this paper, we systematically classify the crystalline topological superconductors (TSC) and topological insulators (TI) in 2D interacting fermionic systems by using an explicit real-space construction. In particular, we discover an intriguing fermionic crystalline topological superconductor that can only be realized in interacting fermionic systems (i.e., not in free-fermion or bosonic SPT systems). Moreover, we also verify the recently conjectured crystalline equivalence principle for generic 2D interacting fermionic systems.
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a finite Fermi surface even when the chemical potential is pinned to the Dirac point energy. We illustrate how this can occur when the crystal symmetry is lowered from cubic to tetragonal in a minimal two-orbital model. We label such surface modes as `shadow surface states. We also show that for certain bulk hybridization the Fermi surface of the shadow states can become comparable to the extremal area of the unhybridized bulk bands. The `large Fermi surface of the shadow states is expected to lead to large-frequency quantum oscillations in the presence of an applied magnetic field. Consequently, shadow surface states provide an alternative to mechanisms involving bulk Landau-quantized levels or surface Kondo breakdown for anomalous magnetic quantum oscillations in topological Kondo insulators with tetragonal crystal symmetry.