Optical conductivity of Bismuth-based topological insulator


Abstract in English

The optical conductivity and the spectral weight of four topological insulators with increasing chemical compensation (Bi2Se3, Bi2-xCaxSe3, Bi2Se2Te, Bi2Te2Se) have been measured from 5 to 300 K and from sub-THz to visible frequencies. The effect of compensation is clearly observed in the infrared spectra, through the suppression of an extrinsic Drude term and the appearance of strong absorption peaks, that we assign to electronic transitions among localized states. From the far-infrared spectral weight of the most compensated sample (Bi2Te2Se) one can estimate a density of charge-carriers in the order of 10^17/cm^3 in good agreement with transport data. Those results demonstrate that the low-energy electrodynamics in single crystals of topological insulators, even at the highest degree of compensation presently achieved, is still affected by extrinsic charge excitations.

Download