Do you want to publish a course? Click here

The JCMT Legacy Survey of the Gould Belt: mapping 13CO and C18O in Orion A

216   0   0.0 ( 0 )
 Added by Jane Buckle
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Gould Belt Legacy Survey will map star-forming regions within 500 pc, using HARP (Heterodyne Array Receiver Programme), SCUBA-2 (Submillimetre Common-User Bolometer Array 2) and POL-2 (Polarimeter 2) on the James Clerk Maxwell Telescope (JCMT). This paper describes HARP observations of the J = 3-2 transitions of 13CO and C18O towards Orion A. The 1500-resolution observations cover 5 pc of the Orion filament, including OMC1 (inc. BN-KL and Orion Bar), OMC 2/3 and OMC 4, and allow a comparative study of the molecular gas properties throughout the star-forming cloud. The filament shows a velocity gradient of ~1 km/s /pc between OMC 1, 2 and 3, and high velocity emission is detected in both isotopologues. The Orion Nebula and Bar have the largest masses and line widths, and dominate the mass and energetics of the high velocity material. Compact, spatially resolved emission from CH3CN, 13CH3OH, SO, HCOOCH3, C2H5OH, CH3CHO and CH3OCHO is detected towards the Orion Hot Core. The cloud is warm, with a median excitation temperature of ~24 K; the Orion Bar has the highest excitation temperature gas, at >80 K. The C18O excitation temperature correlates well with the dust temperature (to within 40%). The C18O emission is optically thin, and the 13CO emission is marginally optically thick; despite its high mass, OMC 1 shows the lowest opacities. A virial analysis indicates that Orion A is too massive for thermal or turbulent support, but is consistent with a model of a filamentary cloud that is threaded by helical magnetic fields. The variation of physical conditions across the cloud is reflected in the physical characteristics of the dust cores....continued



rate research

Read More

The Gould Belt Legacy Survey will survey nearby star-forming regions (within 500 pc), using HARP (Heterodyne Array Receiver Programme), SCUBA-2 (Submillimetre Common- User Bolometer Array 2) and POL-2 (Polarimeter 2) on the James Clerk Maxwell Telescope (JCMT). This paper describes the initial data obtained using HARP to observe 12CO, 13CO and C18O J = 3 - 2 towards two regions in Orion B, NGC 2024 and NGC 2071. We describe the physical characteristics of the two clouds, calculating temperatures and opacities utilizing all three isotopologues. We find good agreement between temperatures calculated from CO and from dust emission in the dense, energetic regions. We determine the mass and energetics of the clouds, and of the high-velocity material seen in 12CO emission, and compare the relative energetics of the high- and low-velocity material in the two clouds. We present a CLUMPFIND analysis of the 13CO condensations. The slope of the condensation mass functions, at the high-mass ends, is similar to the slope of the initial mass function.
101 - J. Lane , H. Kirk , D. Johnstone 2016
The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 {mu}m and 450 {mu}m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.
As part of a JCMT Legacy Survey of star formation in the Gould Belt, we present early science results for Taurus. CO J=3-2 maps have been secured along the north-west ridge and bowl, collectively known as L 1495, along with deep 13CO and C18O J=3-2 maps in two sub-regions. With these data we search for molecular outflows, and use the distribution of flows, HH objects and shocked H2 line emission features, together with the population of young stars, protostellar cores and starless condensations to map star formation across this extensive region. In total 21 outflows are identified. It is clear that the bowl is more evolved than the ridge, harbouring a greater population of T Tauri stars and a more diffuse, more turbulent ambient medium. By comparison, the ridge contains a much younger, less widely distributed population of protostars which, in turn, is associated with a greater number of molecular outflows. We estimate the ratio of the numbers of prestellar to protostellar cores in L 1495 to be ~ 1.3-2.3, and of gravitationally unbound starless cores to (gravitationally bound) prestellar cores to be ~ 1. If we take previous estimates of the protostellar lifetime of ~ 5 x 10^5 yrs, this indicates a prestellar lifetime of 9(+/-3) x 10^5 yrs. From the number of outflows we also crudely estimate the star formation efficiency in L 1495, finding it to be compatible with a canonical value of 10-15 %. We note that molecular outflow-driving sources have redder near-IR colours than their HH jet-driving counterparts. We also find that the smaller, denser cores are associated with the more massive outflows, as one might expect if mass build-up in the flow increases with the collapse and contraction of the protostellar envelope.
The Gould Belt Legacy Survey (GBS) on the JCMT has observed a region of 260 square arcminutes in 12CO J=3--2 emission, and a 190 square arcminute subset of this in 13CO and C18O towards the Serpens molecular cloud. We examine the global velocity structure of the non-outflowing gas, and calculate excitation temperatures and opacities. The large scale mass and energetics of the region are evaluated, with special consideration for high velocity gas. We find the cloud to have a mass of 203 solar masses, and to be gravitationally bound, and that the kinetic energy of the outflowing gas is approximately seventy percent of the turbulent kinetic energy of the cloud. We identify compact outflows towards some of the submillimetre Class 0/I sources in the region
The JCMT Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwrights Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M-Sigma technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا