Do you want to publish a course? Click here

Signatures of photon-axion conversion in the thermal spectra and polarization of neutron stars

92   0   0.0 ( 0 )
 Added by Rosalba Perna
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Conversion of photons into axions under the presence of a strong magnetic field can dim the radiation from magnetized astrophysical objects. Here we perform a detailed calculation aimed at quantifying the signatures of photon-axion conversion in the spectra, light curves, and polarization of neutron stars (NSs). We take into account the energy and angle-dependence of the conversion probability and the surface thermal emission from NSs. The latter is computed from magnetized atmosphere models that include the effect of photon polarization mode conversion due to vacuum polarization. The resulting spectral models, inclusive of the general-relativistic effects of gravitational redshift and light deflection, allow us to make realistic predictions for the effects of photon to axion conversion on observed NS spectra, light curves, and polarization signals. We identify unique signatures of the conversion, such as an increase of the effective area of a hot spot as it rotates away from the observer line of sight. For a star emitting from the entire surface, the conversion produces apparent radii that are either larger or smaller (depending on axion mass and coupling strength) than the limits set by NS equations of state. For an emission region that is observed phase-on, photon-axion conversion results in an inversion of the plane of polarization with respect to the no-conversion case. While the quantitative details of the features that we identify depend on NS properties (magnetic field strength, temperature) and axion parameters, the spectral and polarization signatures induced by photon-axion conversion are distinctive enough to make NSs very interesting and promising probes of axion physics.

rate research

Read More

Some isolated neutron stars show harmonically spaced absorption features in their thermal soft X-ray spectra. The interpretation of the features as a cyclotron line and its harmonics has been suggested, but the usual explanation of the harmonics as caused by relativistic effects fails because the relativistic corrections are extremely small in this case. We suggest that the features correspond to the peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. The peaks arise when the transitions to new Landau levels become allowed with increasing the photon energy; they are strongly enhanced by the square-root singularities in the phase-space density of quantum states in the case when the free (non-quantized) motion is effectively one-dimensional. To explore observable properties of these quantum oscillations, we calculate models of hydrogen neutron star atmospheres with B sim 10^{10} - 10^{11} G (i.e., electron cyclotron energy E_{c,e} = 0.1 - 1 keV) and T_{eff} = 1 - 3 MK. Such conditions are thought to be typical for the so-called central compact objects in supernova remnants, such as 1E 1207.4-5209 in PKS 1209-51/52. We show that observable features at the electron cyclotron harmonics form at moderately large values of the quantization parameter, b_{eff} = E_{c,e}/kT_{eff} = 0.5 - 20. The equivalent widths of the features can reach 100 - 200 eV; they grow with increasing b_{eff} and are lower for higher harmonics.
Axions are well-motivated candidates for dark matter. Recently, much interest has focused on the detection of photons produced by the resonant conversion of axion dark matter in neutron star magnetospheres. Various groups have begun to obtain radio data to search for the signal, however, more work is needed to obtain a robust theory prediction for the corresponding radio lines. In this work we derive detailed properties for the signal, obtaining both the line shape and time-dependence. The principal physical effects are from refraction in the plasma as well as from gravitation which together lead to substantial lensing which varies over the pulse period. The time-dependence from the co-rotation of the plasma with the pulsar distorts the frequencies leading to a Doppler broadened signal whose width varies in time. For our predictions, we trace curvilinear rays to the line of sight using the full set of equations from Hamiltonian optics for a dispersive medium in curved spacetime. Thus, for the first time, we describe the detailed shape of the line signal as well as its time dependence, which is more pronounced compared to earlier results. Our prediction of the features of the signal will be essential for this kind of dark matter search.
A proto-neutron star (PNS) is a newly formed compact object in a core collapse supernova. In this Letter, the neutrino emission from the cooling process of a PNS is investigated using two types of nuclear equation of state (EOS). It is found that the neutrino signal is mainly determined by the high-density EOS. The neutrino luminosity and mean energy are higher and the cooling time scale is longer for the softer EOS. Meanwhile, the neutrino mean energy and the cooling time scale are also affected by the low-density EOS because of the difference in the population of heavy nuclei. Heavy nuclei have a large scattering cross section with neutrinos owing to the coherent effects and act as thermal insulation near the surface of a PNS. The neutrino mean energy is higher and the cooling time scale is longer for an EOS with a large symmetry energy at low densities, namely a small density derivative coefficient of the symmetry energy, $L$.
Diluted axion star, a self-gravitating object with the quantum pressure balancing gravity, has been predicted in many models with a QCD axion or axion-like particle. It can be formed in the early universe and composes a sizable fraction of dark matter. One could detect the transient radio signals when it passes by a magnetar with the axion particle converted into photon in the magnetic field. Using both numerical and semi-analytic approaches, we simulate the axion stars dynamic evolution and estimate the fraction of axion particles that can have a resonance conversion during such a collision event. We have found that both self-gravity and quantum pressure are not important after the diluted axion star enters the Roche radius. A free-fall approximate can capture individual particle trajectories very well. With some optimistic cosmological and astrophysical assumptions, the QCD axion parameter space can be probed from detecting such a collision event by radio telescopes.
We perform general relativistic one-dimensional supernova (SN) simulations to identify observable signatures of enhanced axion emission from the pion induced reaction $pi^- + p rightarrow n + a$ inside a newly born proto-neutron star (PNS). We focus on the early evolution after the onset of the supernova explosion to predict the temporal and spectral features of the neutrino and axion emission during the first 10 seconds. Pions are included as explicit new degrees of freedom in hot and dense matter. Their thermal population and their role in axion production are both determined consistently to include effects due to their interactions with nucleons. For a wide range of ambient conditions encountered inside a PNS we find that the pion induced axion production dominates over nucleon-nucleon bremsstrahlung processes. By consistently including the role of pions on the dense matter equation of state and on the energy loss, our simulations predict robust discernible features of neutrino and axion emission from a galactic supernova that can be observed in terrestrial detectors. For axion couplings that are compatible with current bounds, we find a significant suppression with time of the neutrino luminosity during the first 10 seconds. This suggests that current bounds derived from the neutrino signal from SN 1987A can be improved, and that future galactic supernovae may provide significantly more stringent constraints.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا