Do you want to publish a course? Click here

How to detect gravitational waves through the cross-correlation of the galaxy distribution with the CMB polarization

354   0   0.0 ( 0 )
 Added by Esfandiar Alizadeh
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thompson scattering of cosmic microwave background (CMB) photons off of free electrons during the reionization epoch induces a correlation between the distribution of galaxies and the polarization pattern of the CMB, the magnitude of which is proportional to the quadrupole moment of radiation at the time of scattering. Since the quadrupole moment generated by gravitational waves (GWs) gives rise to a different polarization pattern than that produced by scalar modes, one can put interesting constraints on the strength of GWs on large scales by cross-correlating the small scale galaxy distribution and CMB polarization. We use this method together with Fisher analysis to predict how well future surveys can measure the tensor-to-scalar ratio $r$. We find that with a future CMB experiment with detector noise Delta_P = 2 mu K-arcmin and a beam width theta_FWHM = 2 and a future galaxy survey with limiting magnitude I<25.6 one can measure the tensor-to-scalar ratio with an error sigma_r simeq 0.09. To measure r approx 0.01, however, one needs Delta_P simeq 0.5 mu K-radian and theta_FWHM simeq 1. We also investigate a few systematic effects, none of which turn out to add any biases to our estimators, but they increase the error bars by adding to the cosmic variance. The incomplete sky coverage has the most dramatic effect on our constraints on r for large sky cuts, with a reduction in signal-to-noise smaller than one would expect from the naive estimate (S/N)^2 propto f_sky. Specifically, we find a degradation factor of f_deg=0.32 pm 0.01 for a sky cut of |b|>10^circ (f_sky=0.83) and f_deg=0.056 pm 0.004 for a sky cut of |b|>20^circ (f_sky=0.66). Nonetheless, given that our method has different systematics than the more conventional method of observing the large scale B modes directly, it may be used as an important check in the case of a detection.



rate research

Read More

We study the effects of pre-recombination physics on the Stochastic Gravitational Wave Background (SGWB) anisotropies induced by the propagation of gravitons through the large-scale density perturbations and their cross-correlation with Cosmic Microwave Background (CMB) temperature and E-mode polarization ones. As examples of Early Universe extensions to the $Lambda$CDM model, we consider popular models featuring extra relativistic degrees of freedom, a massless non-minimally coupled scalar field, and an Early Dark Energy component. Assuming the detection of a SGWB, we perform a Fisher analysis to assess in a quantitative way the capability of future gravitational wave interferometers (GWIs) in conjunction with a future large-scale CMB polarization experiment to constrain such variations. Our results show that the cross-correlation of CMB and SGWB anisotropies will help tighten the constraints obtained with CMB alone, with an improvement that significantly depends on the specific model as well as the maximum angular resolution $ell_{rm max}^{rm GW}$ of the GWIs, their designed sensitivity, and the amplitude $A_*$ of the monopole of the SGWB.
We demonstrate that the cosmic microwave background (CMB) temperature-polarization cross-correlation provides accurate and robust constraints on cosmological parameters. We compare them with the results from temperature or polarization and investigate the impact of foregrounds, cosmic variance, and instrumental noise. This analysis makes use of the Planck high-multipole HiLLiPOP likelihood based on angular power spectra, which takes into account systematics from the instrument and foreground residuals directly modelled using Planck measurements. The temperature-polarization correlation (TE) spectrum is less contaminated by astrophysical emissions than the temperature power spectrum (TT), allowing constraints that are less sensitive to foreground uncertainties to be derived. For {Lambda}CDM parameters, TE gives very competitive results compared to TT. For basic {Lambda}CDM model extensions (such as AL, {Sigma}m{ u}, or Neff ), it is still limited by the instrumental noise level in the polarization maps.
Cosmic Microwave Background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitational wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several non-standard, symmetry breaking theories of electrodynamics that allow for textit{in vacuo} rotation if the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the CMB may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle $alpha=-4.3^circpm4.1^circ$. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then $1^circ$ for Planck and $0.2circ$ for EPIC, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a GW background.
We examine the use of the CMBs TE cross correlation power spectrum as a complementary test to detect primordial gravitational waves (PGWs). The first method used is based on the determination of the lowest multipole, $ell_0$, where the TE power spectrum, $C_{ell}^{TE}$, first changes sign. The second method uses Wiener filtering on the CMB TE data to remove the density perturbations contribution to the TE power spectrum. In principle this leaves only the contribution of PGWs. We examine two toy experiments (one ideal and another more realistic) to see their ability to constrain PGWs using the TE power spectrum alone. We found that an ideal experiment, one limited only by cosmic variance, can detect PGWs with a ratio of tensor to scalar metric perturbation power spectra $r=0.3$ at 99.9% confidence level using only the TE correlation. This value is comparable with current constraints obtained by WMAP based on the $2sigma$ upper limits to the B-mode amplitude. We demonstrate that to measure PGWs by their contribution to the TE cross correlation power spectrum in a realistic ground based experiment when real instrumental noise is taken into account, the tensor-to-scalar ratio, $r$, should be approximately three times larger.
104 - Zeyang Sun 2021
We measure the cross-correlation between galaxy groups constructed from DESI Legacy Imaging Survey DR8 and Planck CMB lensing, over overlapping sky area of 16876 $rm deg^2$. The detections are significant and consistent with the expected signal of the large scale structure of the universe, over group samples of various redshift, mass and richness $N_{rm g}$ and over various scale cuts. The overall S/N is 39 for a conservative sample with $N_{rm g}geq 5$, and increases to $48$ for the sample with $N_{rm g}geq 2$. Adopting the Planck 2018 cosmology, we constrain the density bias of groups with $N_{rm g}geq 5$ as $b_{rm g}=1.31pm 0.10$, $2.22pm 0.10$, $3.52pm 0.20$ at $0.1<zleq 0.33$, $0.33<zleq 0.67$, $0.67<zleq1$ respectively. The value-added group catalog allows us to detect the dependence of bias on group mass with high significance. It also allows us to compare the measured bias with the theoretically predicted one using the estimated group mass. We find excellent agreement for the two high redshift bins. However, it is lower than the theory by $sim 3sigma$ for the lowest redshift bin. Another interesting finding is the significant impact of the thermal Sunyaev Zeldovich (tSZ). It contaminates the galaxy group-CMB lensing cross-correlation at $sim 30%$ level, and must be deprojected first in CMB lensing reconstruction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا