No Arabic abstract
We present a spectroscopic survey of 21 young massive clusters and complexes and one tidal dwarf galaxy candidate (TDG) in Stephans Quintet, an interacting compact group of galaxies. All of the selected targets lie outside the main galaxies of the system and are associated with tidal debris. We find clusters with ages between a few and 125 Myr and confirm the ages estimated through HST photometry by Fedotov et al. (2011), as well as their modelled interaction history of the Quintet. Many of the clusters are found to be relatively long-lived, given their spectrosopically derived ages, while their high masses suggest that they will likely evolve to eventually become intergalactic clusters. One cluster, T118, is particularly interesting, given its age (sim 125 Myr), high mass (sim 2times10^6 Modot) and position in the extreme outer end of the young tidal tail. This cluster appears to be quite extended (Reff sim 12 - 15 pc) compared to clusters observed in galaxy disks (Reff sim 3 - 4 pc), which confirms an effect we previously found in the tidal tails of NGC 3256, where clusters are similarly extended. We find that star and cluster formation can proceed at a continuous pace for at least sim 150 Myr within the tidal debris of interacting galaxies. The spectrum of the TDG candidate is dominated by a young population (sim 7 Myr), and assuming a single age for the entire region, has a mass of at least 10^6 Modot.
We present Gemini optical spectroscopy of 23 young star clusters in NGC3256. We find that the cluster ages range are from few Myr to ~150 Myr. All these clusters are relatively massive (2--40)x 10^{5} msun$ and appear to be of roughly 1.5 zo metallicity. The majority of the clusters in our sample follow the same rotation curve as the gas and hence were presumably formed in the molecular-gas disk. However, a western subsample of five clusters has velocities that deviate significantly from the gas rotation curve. These clusters may either belong to the second spiral galaxy of the merger or may have formed in tidal-tail gas falling back into the system. We discuss our observations in light of other known cluster populations in merging galaxies, and suggest that NGC 3256 is similar to Arp 220, and hence may become an Ultra-luminous Infrared Galaxy as the merger progresses and the star-formation rate increases. Some of the clusters which appeared as isolated in our ground-based images are clearly resolved into multiple sub-components in the HST-ACS images. The same effect has been observed in the Antennae galaxies, showing that clusters are often not formed in isolation, but instead tend to form in larger groups or cluster complexes.
We present Gemini optical spectroscopy of three young star clusters in the western tidal tail of NGC3256. Compact star clusters (as opposed to dwarf-galaxy candidates) in tidal tails are rare, with these three clusters the first for which detailed quantitative spectroscopy has ever been obtained. We find that two of these clusters appear to be coeval, while the third is approximately two times older~200 Myr vs.~80 Myr). All three clusters are massive (1-3 x 10^5 msun) and appear to be of roughly solar metallicity. Additionally, the three clusters appear to be relatively large (R_eff = 10-20 pc), possibly reflecting weak compression at the time of formation and/or the weak influence of the tidal field of the galaxy. All three clusters have velocities consistent with the general trend of the HI velocities in the tidal tail. We conclude that if the loosely bound tail material of NGC 3256 gets stripped during future interactions of this galaxy within its group, these three clusters may become part of the intra-group medium.
Stephans Quintet (SQ) is a compact group of galaxies that exhibits numerous signs of interactions between its members. Using high resolution images of SQ in B438, V606, and I814 bands from the Early Release Science project obtained with the Wide Field Camera 3 on the Hubble Space Telescope, we identify 496 star cluster candidates (SCCs), located throughout the galaxies themselves as well as in intergalactic regions. Our photometry goes sim2 mag deeper and covers an additional three regions, the Old Tail, NGC 7317, and the Southern Debris Region, compared to previous work. Through comparison of the B438 - V606 and V606 - I814 colors of the star cluster candidates with simple stellar population synthesis models we are able to constrain cluster ages. In particular, the most massive galaxy of SQ, NGC 7319, exhibits continuous star formation throughout its history, although at a lower rate over the past few tens of Myr. NGC 7318 A/B and the Northern Star Burst region both show ongoing active star formation; there are a number of star clusters that are younger than 10 Myr. NGC 7318 A/B also features a peculiar gap in the color distribution of the star clusters that can be used to date the onset of the recent burst. The majority of the SCCs detected in the Young Tail were formed 150-200 Myr ago whereas the tight distribution of star cluster colors in the Old Tail, allow us to constrain its age of formation to sim400 Myr ago. The star clusters in the Southern Debris region are seemingly divided into two groups with ages of 50 and sim500 Myr and virtually all of the SCCs detected in NGC 7317 are over 2 Gyr old. Based on these ages, we estimate time intervals for the interactions between SQ members that triggered the massive star cluster formation.
We analyse a comprehensive set of MIR/FIR observations of Stephans Quintet (SQ), taken with the Spitzer Space Observatory. Our study reveals the presence of a luminous (L_{IR}approx 4.6x10^43 erg/s) and extended component of infrared dust emission, not connected with the main bodies of the galaxies, but roughly coincident with the X-ray halo of the group. We fitted the inferred dust emission spectral energy distribution of this extended source and the other main infrared emission components of SQ, including the intergalactic shock, to elucidate the mechanisms powering the dust and PAH emission, taking into account collisional heating by the plasma and heating through UV and optical photons. Combining the inferred direct and dust-processed UV emission to estimate the star formation rate (SFR) for each source we obtain a total SFR for SQ of 7.5 M(sun)/yr, similar to that expected for non-interacting galaxies with stellar mass comparable to the SQ galaxies. Although star formation in SQ is mainly occurring at, or external to the periphery of the galaxies, the relation of SFR per unit physical area to gas column density for the brightest sources is similar to that seen for star-formation regions in galactic disks. We also show that available sources of dust in the group halo can provide enough dust to produce up to L_{IR}approx 10^42 erg/s powered by collisional heating. Though a minority of the total infrared emission (which we infer to trace distributed star-formation), this is several times higher than the X-ray luminosity of the halo, so could indicate an important cooling mechanism for the hot IGM and account for the overall correspondence between FIR and X-ray emission.
We investigated the star formation efficiency for all the dust emitting sources in Stephans Quintet (SQ). We inferred star formation rates using Spitzer MIR/FIR and GALEX FUV data and combined them with gas column density measurements by various authors, in order to position each source in a Kennicutt-Schmidt diagram. Our results show that the bright IGM star formation regions in SQ present star formation efficiencies consistent with those observed within local galaxies. On the other hand, star formation in the intergalactic shock region seems to be rather inhibited.