Do you want to publish a course? Click here

On plasma radiative properties in stellar conditions

141   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The knowledge of stellar evolution is evolving quickly thanks to an increased number of opportunities to scrutinize the stellar internal plasma properties by stellar seismology and by 1D and 3D simulations. These new tools help us to introduce the internal dynamical phenomena in stellar modeling. A proper inclusion of these processes supposes a real confidence in the microscopic physics used, partly checked by solar or stellar acoustic modes. In the present paper we first recall which fundamental physics has been recently verified by helioseismology. Then we recall that opacity is an important ingredient of the secular evolution of stars and we point out why it is necessary to measure absorption coefficients and degrees of ionization in the laboratory for some well identified astrophysical conditions. We examine two specific experimental conditions which are accessible to large laser facilities and are suitable to solve some interesting questions of the stellar community: are the solar internal radiative interactions properly estimated and what is the proper role of the opacity in the excitation of the non radial modes in the envelop of the $beta$ Cephei and the Be stars ? At the end of the paper we point out the difficulties of the experimental approach that we need to overcome.



rate research

Read More

The lifetime of solar-like stars, the envelope structure of more massive stars, and stellar acoustic frequencies largely depend on the radiative properties of the stellar plasma. Up to now, these complex quantities have been estimated only theoretically. The development of the powerful tools of helio- and astero- seismology has made it possible to gain insights on the interiors of stars. Consequently, increased emphasis is now placed on knowledge of the monochromatic opacity coefficients. Here we review how these radiative properties play a role, and where they are most important. We then concentrate specifically on the envelopes of $beta$ Cephei variable stars. We discuss the dispersion of eight different theoretical estimates of the monochromatic opacity spectrum and the challenges we need to face to check these calculations experimentally.
The processes of the coronal plasma heating and cooling were previously shown to significantly affect the dynamics of slow magnetoacoustic (MA) waves, causing amplification or attenuation, and also dispersion. However, the entropy mode is also excited in such a thermodynamically active plasma and is affected by the heating/cooling misbalance too. This mode is usually associated with the phenomenon of coronal rain and formation of prominences. Unlike the adiabatic plasmas, the properties and evolution of slow MA and entropy waves in continuously heated and cooling plasmas get mixed. Different regimes of the misbalance lead to a variety of scenarios for the initial perturbation to evolve. In order to describe properties and evolution of slow MA and entropy waves in various regimes of the misbalance, we obtained an exact analytical solution of the linear evolutionary equation. Using the characteristic timescales and the obtained exact solution, we identified regimes with qualitatively different behaviour of slow MA and entropy modes. For some of those regimes, the spatio-temporal evolution of the initial Gaussian pulse is shown. In particular, it is shown that slow MA modes may have a range of non-propagating harmonics. In this regime, perturbations caused by slow MA and entropy modes in a low-$beta$ plasma would look identically in observations, as non-propagating disturbances of the plasma density (and temperature) either growing or decaying with time. We also showed that the partition of the initial energy between slow MA and entropy modes depends on the properties of the heating and cooling processes involved. The obtained exact analytical solution could be further applied to the interpretation of observations and results of numerical modelling of slow MA waves in the corona and the formation and evolution of coronal rain.
High-energy astrophysical systems frequently contain collisionless relativistic plasmas that are heated by turbulent cascades and cooled by emission of radiation. Understanding the nature of this radiative turbulence is a frontier of extreme plasma astrophysics. In this paper, we use particle-in-cell simulations to study the effects of external inverse Compton radiation on turbulence driven in an optically thin, relativistic pair plasma. We focus on the statistical steady state (where injected energy is balanced by radiated energy) and perform a parameter scan spanning from low magnetization to high magnetization ($0.04 lesssim sigma lesssim 11$). We demonstrate that the global particle energy distributions are quasi-thermal in all simulations, with only a modest population of nonthermal energetic particles (extending the tail by a factor of $sim 2$). This indicates that nonthermal particle acceleration (observed in similar non-radiative simulations) is quenched by strong radiative cooling. The quasi-thermal energy distributions are well fit by analytic models in which stochastic particle acceleration (due to, e.g., second-order Fermi mechanism or gyroresonant interactions) is balanced by the radiation reaction force. Despite the efficient thermalization of the plasma, nonthermal energetic particles do make a conspicuous appearance in the anisotropy of the global momentum distribution as highly variable, intermittent beams (for high magnetization cases). The beamed high-energy particles are spatially coincident with intermittent current sheets, suggesting that localized magnetic reconnection may be a mechanism for kinetic beaming. This beaming phenomenon may explain rapid flares observed in various astrophysical systems (such as blazar jets, the Crab nebula, and Sagittarius A*).
The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and 2D particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in 3D, using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.
We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1ns. The later times are calculated with the CRASH code. This code solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties are consistent with order-of-magnitude estimates. The produced synthetic radiographs can be used for comparison with future nozzle experiments at high-energy-density laser facilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا