Do you want to publish a course? Click here

Electronic configuration of Mn ions in the $pi$-d molecular ferromagnet $beta$-Mn phthalocyanine studied by soft x-ray magnetic circular dichroism

144   0   0.0 ( 0 )
 Added by Takashi Kataoka
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the electronic structure of the molecular ferromagnet $beta$-Mn phthalocyanine ($beta$-MnPc) in a polycrystalline form, which has been reported to show ferromagnetism at T$<$8.6 K, by x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD). From the experimental results and subsequent cluster-model calculation, we find that the ferromagnetic Mn ion in $beta$-MnPc is largely in the $^4$$E$$_g$ ground state arising from the ($e$$_{g}$)$^3$($b$$_{2g}$)$^1$($a$$_{1g}$)$^1$ [($d_{xz,yz}$)$^3$($d_{xy}$)$^1$($d_{z^{2}}$)$^1$] configuration of the Mn$^{2+}$ state. Considering that the highest occupied molecular orbital (HOMO) of MnPc with the $^4$$E$$_g$ ground state originates from the $a$$_{1g}$ orbital of the Mn$^{2+}$ ion, it is proposed that $a$$_{1g}$-$a$$_{1g}$ exchange coupling via the $pi$ orbitals of the phthalocyanine ring plays a crucial role in the ferromagnetism of $beta$-MnPc.



rate research

Read More

The magnetic properties of as-grown Ga$_{1-x}$Mn$_{x}$As have been investigated by the systematic measurements of temperature and magnetic field dependent soft x-ray magnetic circular dichroism (XMCD). The {it intrinsic} XMCD intensity at high temperatures obeys the Curie-Weiss law, but residual spin magnetic moment appears already around 100 K, significantly above Curie temperature ($T_C$), suggesting that short-range ferromagnetic correlations are developed above $T_C$. The present results also suggest that antiferromagnetic interaction between the substitutional and interstitial Mn (Mn$_{int}$) ions exists and that the amount of the Mn$_{int}$ affects $T_C$.
We have investigated the electronic structure of ZnO:Mn and ZnO:Mn,N thin films using x-ray magnetic circular dichroism (XMCD) and resonance-photoemission spectroscopy. From the Mn 2$p$$rightarrow3d$ XMCD results, it is shown that, while XMCD signals only due to paramagnetic Mn$^{2+}$ ions were observed in ZnO:Mn, nonmagnetic, paramagnetic and ferromagnetic Mn$^{2+}$ ions coexist in ZnO:Mn,N. XMCD signals of ZnO:Mn,N revealed that the localized Mn$^{2+}$ ground state and Mn$^{2+}$ state hybridized with ligand hole coexisted, implying $p$-$d$ exchange coupling. In the valence-band spectra, spectral weight near the Fermi level was suppressed, suggesting that interaction between magnetic moments in ZnO:Mn,N has localized nature.
We have studied the electronic and magnetic states of Co and Mn atoms at the interface of the Co$_mathrm{2}$Mn$_{beta}$Si (CMS)/MgO ($beta$=0.69, 0.99, 1.15 and 1.29) magnetic tunnel junction (MTJ) by means of x-ray magnetic circular dichroism. In particular, the Mn composition ($beta$) dependences of the Mn and Co magnetic moments were investigated. The experimental spin magnetic moments of Mn, $m_mathrm{spin}$(Mn), derived from XMCD weakly decreased with increasing Mn composition $beta$ in going from Mn-deficient to Mn-rich CMS films. This behavior was explained by first-principles calculations based on the antisite-based site-specific formula unit (SSFU) composition model, which assumes the formation of only antisite defect, not vacancies, to accommodate off-stoichiometry. Furthermore, the experimental spin magnetic moments of Co, $m_mathrm{spin}$(Co), also weakly decreased with increasing Mn composition. This behavior was consistently explained by the antisite-based SSFU model, in particular, by the decrease in the concentration of Co$_mathrm{Mn}$ antisites detrimental to the half-metallicity of CMS with increasing $beta$. This finding is consistent with the higher TMR ratios which have been observed for CMS/MgO/CMS MTJs with Mn-rich CMS electrodes.
X-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra at the L$_{2,3}$ edges of Mn in (Ge,Mn) compounds have been measured and are compared to the results of first principles calculation. Early textit{ab initio} studies show that the Density Functional Theory (DFT) can very well describe the valence band electronic properties but fails to reproduce a characteristic change of sign in the L$_{3}$ XMCD spectrum of Mn in Ge$_3$Mn$_5$, which is observed in experiments. In this work we demonstrate that this disagreement is partially related to an underestimation of the exchange splitting of Mn 2$p$ core states within the local density approximation. It is shown that the change in sign experimentally observed is reproduced if the exchange splitting is accurately calculated within the Hartree-Fock approximation, while the final states can be still described by the DFT. This approach is further used to calculate the XMCD in different (Ge,Mn) compounds. It demonstrates that the agreement between experimental and theoretical spectra can be improved by combining state of the art calculations for the core and valence states respectively.
We demonstrate sensitivity of the Mn 3d valence states to strain in the ferromagnetic semiconductors (Ga,Mn)As and (Al,Ga,Mn)As, using x-ray magnetic circular dichroism (XMCD). The spectral shape of the Mn $L_{2,3}$ XMCD is dependent on the orientation of the magnetization, and features with cubic and uniaxial dependence are distinguished. Reversing the strain reverses the sign of the uniaxial anisotropy of the Mn $L_3$ pre-peak which is ascribed to transitions from the Mn 2p core level to p-d hybridized valence band hole states. With increasing carrier localization, the $L_3$ pre-peak intensity increases, indicating an increasing 3d character of the hybridized holes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا