Do you want to publish a course? Click here

Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3w-Volklein method

235   0   0.0 ( 0 )
 Added by Olivier Bourgeois
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

A suspended system for measuring the thermal properties of membranes is presented. The sensitive thermal measurement is based on the 3$omega$ dynamic method coupled to a V$ddot{o}$lklein geometry. The device obtained using micro-machining processes allows the measurement of the in-plane thermal conductivity of a membrane with a sensitivity of less than 10nW/K (+/-$5x10^{-3}$Wm$^{-1}K^{-1}$ at room temperature) and a very high resolution ($Delta K/K =10^{-3}$). A transducer (heater/thermometer) centered on the membrane is used to create an oscillation of the heat flux and to measure the temperature oscillation at the third harmonic using a Wheatstone bridge set-up. Power as low as 0.1nanoWatt has been measured at room temperature. The method has been applied to measure thermal properties of low stress silicon nitride and polycrystalline diamond membranes with thickness ranging from 100 nm to 400 nm. The thermal conductivity measured on the polycrystalline diamond membrane support a significant grain size effect on the thermal transport.



rate research

Read More

Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring the thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this work, we demonstrate in-situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defects scatterings that decrease the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be a crystalline-amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.
The hot disk transient plane source (TPS) method is a widely used standard technique (ISO 22007-2) for the characterization of thermal properties of materials, especially the thermal conductivity, k. Despite its well-established reliability for a wide variety of common materials, the hot disk TPS method is also known to suffer from a substantial systematic errors when applied to low-k thermal insulation materials. Here, we present a combined numerical and experimental study on the influence of the geometry of hot disk sensor on measured value of low-k materials. We demonstrate that the error is strongly affected by the finite thickness and thermal mass of the sensors insulation layer was well as the corresponding increase of the effective heater size beyond the radius of the embedded metal heater itself. We also numerically investigate the dependence of the error on the sample thermal properties, confirming that the errors are worse in low-k samples. A simple correction function is also provided, which converts the apparent (erroneous) result from a standard hot disk TPS measurement to a more accurate value. A standard polyimide sensor was also optimized using both wet and dry etching to provide more accurate measurement directly. Experimentally corrected value of k for Airloy x56 aerogel and a commercial silica aerogel using the numerical correction factor derived based on the standard TPS sensor is in excellent agreement with the directly measured value from the TPS sensor using the optimized polyimide sensor. Both of these methods can reduce the errors to less than 4% as compared to around 40% error of overestimation from raw values measured with the pristine sensor. Such results show that both the numerical correction to a pristine senor or an optimized sensor are capable of providing highly accurate value of thermal conductivity for such materials.
An efficient order$-N$ real-space Kubo approach is developed for the calculation of the thermal conductivity of complex disordered materials. The method, which is based on the Chebyshev polynomial expansion of the time evolution operator and the Lanczos tridiagonalization scheme, efficiently treats the propagation of phonon wave-packets in real-space and the phonon diffusion coefficients. The mean free paths and the thermal conductance can be determined from the diffusion coefficients. These quantities can be extracted simultaneously for all frequencies, which is another advantage in comparison with the Greens function based approaches. Additionally, multiple scattering phenomena can be followed through the time dependence of the diffusion coefficient deep into the diffusive regime, and the onset of weak or strong phonon localization could possibly be revealed at low temperatures for thermal insulators. The accuracy of our computational scheme is demonstrated by comparing the calculated phonon mean free paths in isotope-disordered carbon nanotubes with Landauer simulations and analytical results. Then, the upscalibility of the method is illustrated by exploring the phonon mean free paths and the thermal conductance features of edge disordered graphene nanoribbons having widths of $sim$20 nanometers and lengths as long as a micrometer, which are beyond the reach of other numerical techniques. It is shown that, the phonon mean free paths of armchair nanoribbons are smaller than those of zigzag nanoribbons for the frequency range which dominate the thermal conductance at low temperatures. This computational strategy is applicable to higher dimensional systems, as well as to a wide range of materials.
272 - Adili Aiyiti , Xue Bai , Jing Wu 2018
Establishment of a new technique or extension of an existing technique for thermal and thermoelectric measurements to a more challenging system is an important task to explore the thermal and thermoelectric properties of various materials and systems. The bottleneck lies in the challenges in measuring the thermal contact resistance. In this work, we applied electron beam self-heating technique to derive the intrinsic thermal conductivity of suspended Molybdenum Disulfide (MoS2) ribbons and the thermal contact resistance, with which the interfacial thermal resistance between few-layer MoS2 and Pt electrodes was calculated. The measured room temperature thermal conductivity of MoS2 is around 30 W/mK, while the estimated interfacial thermal resistance is around 2*10-6 m2K/W. Our experiments extend a useful branch in application of this technique for studying thermal properties of suspended layered ribbons and have potential application in investigating the interfacial thermal resistance of different 2D heterojunctions.
Knowledge of the mean free path distribution of heat-carrying phonons is key to understanding phonon-mediated thermal transport. We demonstrate that thermal conductivity measurements of thin membranes spanning a wide thickness range can be used to characterize how bulk thermal conductivity is distributed over phonon mean free paths. A non-contact transient thermal grating technique was used to measure the thermal conductivity of suspended Si membranes ranging from 15 to 1500 nm in thickness. A decrease in the thermal conductivity from 74% to 13% of the bulk value is observed over this thickness range, which is attributed to diffuse phonon boundary scattering. Due to the well-defined relation between the membrane thickness and phonon mean free path suppression, combined with the range and accuracy of the measurements, we can reconstruct the bulk thermal conductivity accumulation vs. phonon mean free path, and compare with theoretical models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا