Do you want to publish a course? Click here

Universal heat conduction in the iron-arsenide superconductor KFe2As2 : Evidence of a d-wave state

212   0   0.0 ( 0 )
 Added by Jean-Philippe Reid
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermal conductivity of the iron-arsenide superconductor KFe2As2 was measured down to 50 mK for a heat current parallel and perpendicular to the tetragonal c-axis. A residual linear term (RLT) at T=0 is observed for both current directions, confirming the presence of nodes in the superconducting gap. Our value of the RLT in the plane is equal to that reported by Dong et al. [Phys. Rev. Lett. 104, 087005 (2010)] for a sample whose residual resistivity was ten times larger. This independence of the RLT on impurity scattering is the signature of universal heat transport, a property of superconducting states with symmetry-imposed line nodes. This argues against an s-wave state with accidental nodes. It favors instead a d-wave state, an assignment consistent with five additional properties: the magnitude of the critical scattering rate for suppressing Tc to zero; the magnitude of the RLT, and its dependence on current direction and on magnetic field; the temperature dependence of the thermal conductivity.



rate research

Read More

The pairing mechanism in iron-based superconductors is the subject of ongoing debate. Proximity to an antiferromagnetic phase suggests that pairing is mediated by spin fluctuations, but orbital fluctuations have also been invoked. The former typically favour a pairing state of extended s-wave symmetry with a gap that changes sign between electron and hole Fermi surfaces (s+-), while the latter yield a standard s-wave state without sign change (s++). Here we show that applying pressure to KFe2As2 induces a change of pairing state. The critical temperature Tc decreases with pressure initially, and then suddenly increases, above a critical pressure Pc. The constancy of the Hall coefficient through Pc rules out a change in the Fermi surface. There is compelling evidence that the pairing state below Pc is d-wave, from bulk measurements at ambient pressure. Above Pc, the high sensitivity to disorder argues for a particular kind of s+- state. The change from d-wave to s-wave is likely to proceed via an unusual s + id state that breaks time-reversal symmetry. The proximity of two distinct pairing states found here experimentally is natural given the near degeneracy of d-wave and s+- states found theoretically. These findings make a compelling case for spin-fluctuation-mediated superconductivity in this key iron-arsenide material.
The thermal conductivity kappa of the layered s-wave superconductor NbSe_2 was measured down to T_c/100 throughout the vortex state. With increasing field, we identify two regimes: one with localized states at fields very near H_c1 and one with highly delocalized quasiparticle excitations at higher fields. The two associated length scales are naturally explained as multi-band superconductivity, with distinct small and large superconducting gaps on different sheets of the Fermi surface. This behavior is compared to that of the multi-band superconductor MgB_2 and the conventional superconductor V_3Si.
142 - Y. Machida , S. Sakai , K. Izawa 2010
The thermal transport measurements have been made on the Fe-based superconductor Lu2Fe3Si5 (Tc ~ 6 K) down to a very low temperature Tc/120. The field and temperature dependences of the thermal conductivity confirm the multigap superconductivity with fully opened gaps on the whole Fermi surfaces. In comparison to MgB2 as a typical example of the multigap superconductor in a p-electron system, Lu2Fe3Si5 reveals a remarkably enhanced quasiparticle heat conduction in the mixed state. The results can be interpreted as a consequence of the electronic correlations derived from Fe 3d-electrons.
The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by symmetry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of impurity scattering on the critical temperature Tc. We then compare KFe2As2 to Ba0.6K0.4Fe2As2, obtained by Ba substitution, where the pairing symmetry is s-wave and the Tc is ten times higher. The transition from d-wave to s-wave within the same crystal structure provides a rare opportunity to investigate the connection between band structure and pairing mechanism. We also compare KFe2As2 to the nodal iron-based superconductor LaFePO, for which the pairing symmetry is probably not d-wave, but more likely s-wave with accidental line nodes.
The electrical resistivity rho of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured in applied pressures up to 2.6 GPa for four underdoped samples, with x = 0.16, 0.18, 0.19 and 0.21. The antiferromagnetic ordering temperature T_N, detected as a sharp anomaly in rho(T), decreases linearly with pressure. At pressures above around 1.0 GPa, a second sharp anomaly is detected at a lower temperature T_0, which rises with pressure. We attribute this second anomaly to the onset of a phase that causes a reconstruction of the Fermi surface. This new phase expands with increasing x and it competes with superconductivity. We discuss the possibility that a second spin-density wave orders at T_0, with a Q vector distinct from that of the spin-density wave that sets in at T_N.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا