Do you want to publish a course? Click here

On Order and Rank of Graphs

129   0   0.0 ( 0 )
 Added by Ebrahim Ghorbani
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called reduced if it has no isolated vertices and no two vertices with the same set of neighbors. Akbari, Cameron, and Khosrovshahi conjectured that the number of vertices of every reduced graph of rank r is at most $m(r)=2^{(r+2)/2}-2$ if r is even and $m(r) = 5cdot2^{(r-3)/2}-2$ if r is odd. In this article, we prove that if the conjecture is not true, then there would be a counterexample of rank at most $46$. We also show that every reduced graph of rank r has at most $8m(r)+14$ vertices.



rate research

Read More

210 - E. Ghorbani , A. Mohammadian , 2014
The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called reduced if it has no isolated vertices and no two vertices with the same set of neighbors. We determine the maximum order of reduced triangle-free graphs with a given rank and characterize all such graphs achieving the maximum order.
A $t$-$(n,d,lambda)$ design over ${mathbb F}_q$, or a subspace design, is a collection of $d$-dimensional subspaces of ${mathbb F}_q^n$, called blocks, with the property that every $t$-dimensional subspace of ${mathbb F}_q^n$ is contained in the same number $lambda$ of blocks. A collection of matrices in over ${mathbb F}_q$ is said to hold a subspace design if the set of column spaces of its elements forms the blocks of a subspace design. We use notions of puncturing and shortening of rank metric codes and the rank-metric MacWilliams identities to establish conditions under which the words of a given rank in a linear rank metric code hold a subspace design.
The degree-based entropy of a graph is defined as the Shannon entropy based on the information functional that associates the vertices of the graph with the corresponding degrees. In this paper, we study extremal problems of finding the graphs attaining the minimum degree-based graph entropy among graphs and bipartite graphs with a given number of vertices and edges. We characterize the unique extremal graph achieving the minimum value among graphs with a given number of vertices and edges and present a lower bound for the degree-based entropy of bipartite graphs and characterize all the extremal graphs which achieve the lower bound. This implies the known result due to Cao et al. (2014) that the star attains the minimum value of the degree-based entropy among trees with a given number of vertices.
We show the expected order of RNA saturated secondary structures of size $n$ is $log_4n(1+O(frac{log_2n}{n}))$, if we select the saturated secondary structure uniformly at random. Furthermore, the order of saturated secondary structures is sharply concentrated around its mean. As a consequence saturated structures and structures in the traditional model behave the same with respect to the expected order. Thus we may conclude that the traditional model has already drawn the right picture and conclusions inferred from it with respect to the order (the overall shape) of a structure remain valid even if enforcing saturation (at least in expectation).
123 - Sang-il Oum 2020
The cut-rank of a set $X$ in a graph $G$ is the rank of the $Xtimes (V(G)-X)$ submatrix of the adjacency matrix over the binary field. A split is a partition of the vertex set into two sets $(X,Y)$ such that the cut-rank of $X$ is less than $2$ and both $X$ and $Y$ have at least two vertices. A graph is prime (with respect to the split decomposition) if it is connected and has no splits. A graph $G$ is $k^{+ell}$-rank-connected if for every set $X$ of vertices with the cut-rank less than $k$, $lvert Xrvert$ or $lvert V(G)-Xrvert $ is less than $k+ell$. We prove that every prime $3^{+2}$-rank-connected graph $G$ with at least $10$ vertices has a prime $3^{+3}$-rank-connected pivot-minor $H$ such that $lvert V(H)rvert =lvert V(G)rvert -1$. As a corollary, we show that every excluded pivot-minor for the class of graphs of rank-width at most $k$ has at most $(3.5 cdot 6^{k}-1)/5$ vertices for $kge 2$. We also show that the excluded pivot-minors for the class of graphs of rank-width at most $2$ have at most $16$ vertices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا