Do you want to publish a course? Click here

The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b

98   0   0.0 ( 0 )
 Added by Michael Gillon
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present twenty-three transit light curves and seven occultation light curves for the ultra-short period planet WASP-43 b, in addition to eight new measurements of the radial velocity of the star. Thanks to this extensive data set, we improve significantly the parameters of the system. Notably, the largely improved precision on the stellar density (2.41+-0.08 rho_sun) combined with constraining the age to be younger than a Hubble time allows us to break the degeneracy of the stellar solution mentioned in the discovery paper. The resulting stellar mass and size are 0.717+-0.025 M_sun and 0.667+-0.011 R_sun. Our deduced physical parameters for the planet are 2.034+-0.052 M_jup and 1.036+-0.019 R_jup. Taking into account its level of irradiation, the high density of the planet favors an old age and a massive core. Our deduced orbital eccentricity, 0.0035(-0.0025,+0.0060), is consistent with a fully circularized orbit. We detect the emission of the planet at 2.09 microns at better than 11-sigma, the deduced occultation depth being 1560+-140 ppm. Our detection of the occultation at 1.19 microns is marginal (790+-320 ppm) and more observations are needed to confirm it. We place a 3-sigma upper limit of 850 ppm on the depth of the occultation at ~0.9 microns. Together, these results strongly favor a poor redistribution of the heat to the night-side of the planet, and marginally favor a model with no day-side temperature inversion.



rate research

Read More

We report the discovery of three extrasolar planets that transit their moderately bright (Vmag = 12-13) host stars. WASP-44b is a 0.89-MJup planet in a 2.42-day orbit around a G8V star. WASP-45b is a 1.03-MJup planet which passes in front of the limb of its K2V host star every 3.13 days. Weak Ca II H+K emission seen in the spectra of WASP-45 suggests the star is chromospherically active. WASP-46b is a 2.10-MJup planet in a 1.43-day orbit around a G6V star. Rotational modulation of the light curves of WASP-46 and weak Ca II H+K emission in its spectra show the star to be photospherically and chromospherically active. We imposed circular orbits in our analyses as the radial velocity data are consistent with (near-)circular orbits, as could be expected from both empirical and tidal-theory perspectives for such short-period, Jupiter-mass planets. We discuss the impact of fitting for eccentric orbits for such planets when not supported by the data. The derived planetary and stellar radii depend on the fitted eccentricity and these parameters inform intense theoretical efforts concerning tidal circularisation and heating, bulk planetary composition and the observed systematic errors in planetary and stellar radii. As such, we recommend exercising caution in fitting the orbits of short period, Jupiter-mass planets with an eccentric model when there is no evidence of non-circularity.
We report the discovery by the WASP transit survey of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. WASP-68 b has a mass of 0.95+-0.03 M_Jup, a radius of 1.24-0.06+0.10 R_Jup, and orbits a V=10.7 G0-type star (1.24+-0.03 M_sun, 1.69-0.06+0.11 R_sun, T_eff=5911+-60 K) with a period of 5.084298+-0.000015 days. Its size is typical of hot Jupiters with similar masses. WASP-73 b is significantly more massive (1.88-0.06+0.07 M_Jup) and slightly larger (1.16-0.08+0.12 R_Jup) than Jupiter. It orbits a V=10.5 F9-type star (1.34-0.04+0.05 M_sun, 2.07-0.08+0.19 R_sun, T_eff=6036+-120 K) every 4.08722+-0.00022 days. Despite its high irradiation (2.3 10^9 erg s^-1 cm^-2), WASP-73 b has a high mean density (1.20-0.30+0.26 rho_Jup) that suggests an enrichment of the planet in heavy elements. WASP-88 b is a 0.56+-0.08 M_Jup planet orbiting a V=11.4 F6-type star (1.45+-0.05 M_sun, 2.08-0.06+0.12 R_sun, T_eff=6431+-130 K) with a period of 4.954000+-0.000019 days. With a radius of 1.70-0.07+0.13 R_Jup, it joins the handful of planets with super-inflated radii. The ranges of ages we determine through stellar evolution modeling are 4.2-8.3 Gyr for WASP-68, 2.7-6.4 Gyr for WASP-73 and 1.8-5.3 Gyr for WASP-88. WASP-73 appears to be a significantly evolved star, close to or already in the subgiant phase. WASP-68 and WASP-88 are less evolved, although in an advanced stage of core H-burning.
We used GTC instrument OSIRIS to obtain long-slit spectra in the optical range (520-1040 nm) of the planetary host star WASP-43 (and a reference star) during a full primary transit event and four partial transit observations. We integrated the stellar flux of both stars in different wavelength regions producing several light curves. We fitted transit models to these curves to measure the star-to-planet radius ratio, Rp/Rs, across wavelength among other physical parameters. We measure a Rp/Rs in the white light curve of 0.15988^{+0.00133}_{-0.00145}. We present a tentative detection of an excess in the planet-to-star radius ratio around the Na I doublet (588.9 nm, 589.5 nm) when compared to the nearby continuum at the 2.9-sigma level. We find no significant excess of the measured planet-to-star radius ratio around the K I doublet (766.5 nm, 769.9 nm) when compared to the nearby continuum. Combining our observations with previous published epochs, we refine the estimation of the orbital period. Using a linear ephemeris, we obtained a period of P=0.81347385 +/- 1.5 x 10^{-7} days. Using a quadratic ephemeris, we obtained a period of 0.81347688 +/- 8.6 x 10^{-7} days, and a change in this parameter of dP/dt = -0.15 +/- 0.06 sec/year. As previous results, this hints to the orbital decay of this planet although a timing analysis over several years needs to be made in order to confirm this.
(abridged) We report the discovery of three new transiting planets: WASP-85 A b, WASP-116 b, and WASP-149 b. WASP-85 b orbits its host star every 2.66 days, and has a mass of 1.25 M_Jup and a radius of 1.25 R_Jup. The host star is of G5 spectral type, with magnitude V = 11.2, and lies 141 pc distant. The system has a K-dwarf binary companion, WASP-85 B, at a separation of ~1.5. The close proximity of this companion leads to contamination of our photometry, decreasing the apparent transit depth that we account for during our analysis. Analysis of the Ca II H+K lines shows strong emission that implies that both binary components are strongly active. WASP-116 b is a warm, mildly inflated super-Saturn, with a mass of 0.59 M_Jup and a radius of 1.43 R_Jup. It was discovered orbiting a metal-poor ([Fe/H] = -0.28 dex), cool (T_eff = 5950 K) G0 dwarf every 6.61 days. WASP-149 b is a typical hot Jupiter, orbiting a G6 dwarf with a period of 1.33 days. The planet has a mass and radius of 1.05 M_Jup and 1.29 R_Jup, respectively. The stellar host has an effective temperature of T_eff = 5750 K and has a metallicity of [Fe/H] = 0.16 dex. WASP photometry of the system is contaminated by a nearby star; we therefore corrected the depth of the WASP transits using the measured dilution. WASP-149 lies inside the Neptune desert identified in the planetary mass-period plane by Mazeh, Holczer & Faigler (2016). We model the modulation visible in the K2 lightcurve of WASP-85 using a simple three-spot model consisting of two large spots on WASP-85 A, and one large spot on WASP-85 B, finding rotation periods of 13.1+/-0.1 days for WASP-85 A and 7.5+/-0.03 days for WASP-85 B. We estimate stellar inclinations of I_A = 66.8+/-0.7 degrees and I_B = 39.7+/-0.2 degrees, and constrain the obliquity of WASP-85 A b to be psi<27 degrees. We therefore conclude that WASP-85 A b is very likely to be aligned.
We report the discovery of TOI-561, a multi-planet system in the galactic thick disk that contains a rocky, ultra-short period planet (USP). This bright ($V=10.2$) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P=0.44 days, $R_b = 1.45pm0.11,R_oplus$), c (TOI-561.01, P=10.8 days, $R_c=2.90pm0.13,R_oplus$), and d (TOI-561.03, P=16.3 days, $R_d=2.32pm0.16,R_oplus$). The star is chemically ([Fe/H]$=-0.41pm0.05$, [$alpha$/H]$=+0.23pm0.05$) and kinematically consistent with the galactic thick disk population, making TOI-561 one of the oldest ($10pm3,$Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of $3.2pm0.8,M_oplus$ and $5.5^{+2.0}_{-1.6},$g$,$cm$^{-3}$, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is $7.0pm2.3,M_oplus$ and $1.6pm0.6,$g$,$cm$^{-3}$, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا