Do you want to publish a course? Click here

RXTE Observations of Anomalous X-ray Pulsar 1E 1547.0-5408 During and After its 2008 and 2009 Outbursts

100   0   0.0 ( 0 )
 Added by Rim Dib
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of Rossi X-ray Timing Explorer (RXTE) and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the pulsars radiative outbursts in 2008 October and 2009 January. We report on a study of the evolution of the timing properties and the pulsed flux from 2008 October 4 through 2009 December 26. We show that the pulsed flux decrease which followed an initial rise in the 2008 outburst was interrupted by a spike ~9 days after the initial outburst. In our timing study, a phase-coherent analysis shows that for the first 29 days following the 2008 outburst, there was a very fast increase in the magnitude of the rotational frequency derivative nudot, such that the second derivative was a factor of ~60 larger than that reported in data from 2007. This nudot magnitude increase occurred in concert with the decay of the pulsed flux following the start of the 2008 event. Following the 2009 outburst, for the first 23 days, the second derivative was consistent with zero, and nudot had returned to close to its 2007 value. In contrast to the 2008 event, the 2009 outburst showed a major increase in persistent flux, relatively little change in the pulsed flux, and sudden significant spectral hardening ~15 days after the outburst. We show that, excluding the month following each of the outbursts, and because of the noise and the sparsity in the data, multiple plausible timing solutions fit the pulsars frequency behavior. We note similarities in the behavior of 1E 1547.0-5408 following the 2008 outburst to that seen in the AXP 1E 1048.1-5937 following its 2001-2002 outburst and discuss this in terms of the magnetar model.



rate research

Read More

The fastest-rotating magnetar 1E 1547.0-5408 was observed in broad-band X-rays with Suzaku for 33 ks on 2009 January 28-29, 7 days after the onset of its latest bursting activity. After removing burst events, the absorption-uncorrected 2-10 keV flux of the persistent emission was measured with the XIS as 5.7e-11 ergs cm-2 s-1, which is 1-2 orders of magnitude higher than was measured in 2006 and 2007 when the source was less active. The persistent emission was also detected significantly with the HXD in >10 keV up to at least ~110 keV, with an even higher flux of 1.3e-10 ergs cm-2 s-1 in 20-100 keV. The pulsation was detected at least up to 70 keV at a period of 2.072135+/-0.00005 s, with a deeper modulation than was measured in a fainter state. The phase-averaged 0.7-114 keV spectrum was reproduced by an absorbed blackbody emission with a temperature of 0.65+/-0.02 keV, plus a hard power-law with a photon index of ~1.5. At a distance of 9 kpc, the bolometric luminosity of the blackbody and the 2-100 keV luminosity of the hard power-law are estimated as (6.2+/-1.2)e+35 ergs s-1 and 1.9e+36 ergs s-1, respectively, while the blackbody radius becomes ~5 km. Although the source had not been detected significantly in hard X-rays during the past fainter states, a comparison of the present and past spectra in energies below 10 keV suggests that the hard component is more enhanced than the soft X-ray component during the persistent activity.
145 - L. Kuiper 2012
The magnetar 1E 1547.0-5408 exhibited outbursts in October 2008 and January 2009. In this paper we present in great detail the evolution of the temporal and spectral characteristics of the persistent total and pulsed emission of 1E 1547.0-5408 between ~1 and 300 keV starting in October 3, 2008, and ending in January 2011. We analyzed data collected with the Rossi X-ray Timing Explorer, the International Gamma-Ray Astrophysics Laboratory and the Swift satellite.
308 - Z. Wang , C. Bassa , V. M. Kaspi 2008
We report on optical and infrared observations of the anomalous X-ray pulsar (AXP) 1E 1048.1-5937, made during its ongoing X-ray flare which started in 2007 March. We detected the source in the optical I and near-infrared Ks bands in two ground-based observations and obtained deep flux upper limits from four observations, including one with the Spitzer Space Telescope at 4.5 and 8.0 microns. The detections indicate that the source was approximately 1.3--1.6 magnitudes brighter than in 2003--2006, when it was at the tail of a previous similar X-ray flare. Similar related flux variations have been seen in two other AXPs during their X-ray outbursts, suggesting common behavior for large X-ray flux variation events in AXPs. The Spitzer flux 1E 1048.1-5937 limits are sufficiently deep that we can exclude mid-infrared emission similar to that from the AXP 4U 0142+61, which has been interpreted as arising from a dust disk around the AXP. The optical/near-infrared emission from probably has a magnetospheric origin. The similarity in the flux spectra of 4U 0142+61 and 1E 1048.1-5937 challenges the dust disk model proposed for the latter.
In January 2009, the 2.1-sec anomalous X-ray pulsar 1E 1547.0-5408 evoked intense burst activity. A follow-up Suzaku observation on January 28 recorded enhanced persistent emission both in soft and hard X-rays (Enoto et al. 2010b). Through re-analysis of the same Suzaku data, 18 short bursts were identified in the X-ray events recorded by the Hard X-ray Detector (HXD) and the X-ray Imaging Spectrometer (XIS). Their spectral peaks appear in the HXD-PIN band, and their 10-70 keV X-ray fluences range from ~2e-9 erg cm-2 to 1e-7 erg cm-2. Thus, the 18 events define a significantly weaker burst sample than was ever obtained, ~1e-8-1e-4 erg cm-2. In the ~0.8 to ~300 keV band, the spectra of the three brightest bursts can be represented successfully by a two-blackbody model, or a few alternative ones. A spectrum constructed by stacking 13 weaker short bursts with fluences in the range (0.2-2)e-8 erg s-1 is less curved, and its ratio to the persistent emission spectrum becomes constant at ~170 above ~8 keV. As a result, the two-blackbody model was able to reproduce the stacked weaker-burst spectrum only after adding a power-law model, of which the photon index is fixed at 1.54 as measured is the persistent spectrum. These results imply a possibility that the spectrum composition employing an optically-thick component and a hard power-law component can describe wide-band spectra of both the persistent and weak-burst emissions, despite a difference of their fluxes by two orders of magnitude. Based on the spectral similarity, a possible connection between the unresolved short bursts and the persistent emission is discussed.
We investigated the radio spectra of two magnetars, PSR J1622$-$4950 and 1E 1547.0$-$5408, using observations from the Australia Telescope Compact Array and the Atacama Large Millimeter/submillimeter Array taken in 2017. Our observations of PSR J1622$-$4950 show a steep spectrum with a spectral index of $-$1.3 $pm$ 0.2 in the range of 5.5-45 GHz during its re-activating X-ray outburst in 2017. By comparing the data taken at different epochs, we found significant enhancement in the radio flux density. The spectrum of 1E 1547.0$-$5408 was inverted in the range of 43-95 GHz, suggesting a spectral peak at a few hundred gigahertz. Moreover, we obtained the X-ray and radio data of radio magnetars, PSR J1622$-$4950 and SGR J1745$-$2900, from literature and found two interesting properties. First, radio emission is known to be associated with X-ray outburst but has different evolution. We further found that the rising time of the radio emission is much longer than that of the X-ray during the outburst. Second, the radio magnetars may have double peak spectra at a few GHz and a few hundred GHz. This could indicate that the emission mechanism is different in the cm and the sub-mm bands. These two phenomenons could provide a hint to understand the origin of radio emission and its connection with the X-ray properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا