Do you want to publish a course? Click here

Low-beta structures

148   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English
 Authors M. Vretenar




Ask ChatGPT about the research

Low-beta radio-frequency accelerating structures are used in the sections of a linear accelerator where the velocity of the particle beam increases with energy. The requirement for space periodicity to match the increasing particle velocity led to the development of a large variety of structures, both normal and superconducting, which are described in this lecture.

rate research

Read More

136 - Y. Nosochkov , M. Biagini , Y. Cai 2000
The successful commissioning and operation of the PEP-II asymmetric e+e- collider motivated further studies to increase luminosity. In this paper, we discuss a modification of the PEP-II lattice to reduce the vertical beta function at the Interaction Point (IP) from the design value of 1.5cm to 1.0cm. This could potentially reduce the colliding beam size, increase particle density at the IP and the probability of beam-beam interactions. In this paper, we outline the optics modifications, discuss tracking simulations, and overview machine implementation.
We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCBs placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations to the particle trajectory. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chromaticity compensation scheme.
A superconducting half-wave resonator (HWR) of frequency=162.5 MHz and {beta}=0.09 has been developed at Institute of Modern Physics. Mechanical stability of the low beta HWR cavity is a big challenge in cavity design and optimization. The mechanical deformations of a radio frequency superconducting cavity could be a source of instability, both in continues wave(CW) operation or in pulsed mode. Generally, the lower beta cavities have stronger Lorentz force detuning than that of the higher beta cavities. In this paper, a basic design consideration in the stiffening structure for the detuning effect caused by helium pressure and Lorentz force has been presented. The mechanical modal analysis has been investigated with finite element method(FEM). Based on these considerations, a new stiffening structure has been promoted for the HWR cavity. The computation results concerning the frequency shift show that the low beta HWR cavity with new stiffening structure has low frequency sensitivity coefficient, Lorentz force detuning coefficient KL and stable mechanical property.
A single gap, 352 MHz superconducting reentrant cavity for 5-100 MeV beams has been designed and it is presently under construction. This development is being done in the framework of a 30 mA proton linac project for nuclear waste transmutation. Mechanical, cryogenic and rf design characteristics of such cavities will be described.
The China Accelerator Driven Sub-critical System (CADS) is a high intensity proton facility to dispose of nuclear waste and generate electric power. CADS is based on 1.5GeV, 10mA CW superconducting (SC) linac as a driver. The high-energy section of the linac is compose of two families of SC elliptical cavities which are designed for the geometrical beta 0.63 and 0.82. In this paper, the 650 MHz b{eta}=0.63 SC elliptical cavity was studied including cavity optimization, multipacting, high order modes (HOMs) and generator RF power calculation. Keywords: high current, medium beta, ADS, superconducting cavity, HOMs
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا