Do you want to publish a course? Click here

Eccentricity of radiative discs in close binary-star systems

163   0   0.0 ( 0 )
 Added by Philippe Thebault
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Discs in binaries have a complex behavior because of the perturbations of the companion star. Planet formation in binary-star systems both depend on the companion star parameters and on the properties of the circumstellar disc. An eccentric disc may increase the impact velocity of planetesimals and therefore jeopardize the accumulation process. We model the evolution of discs in close binaries including the effects of self-gravity and adopting different prescriptions to model the discs radiative properties. We focus on the dynamical properties and evolutionary tracks of the discs. We use the hydrodynamical code FARGO and we include in the energy equation heating and cooling effects. Radiative discs have a lower disc eccentricity compared to locally isothermal discs with same temperature profile. As a consequence, we do not observe the formation of an internal elliptical low density region as in locally isothermal disc models. However, the disc eccentricity depends on the disc mass through the opacities. Akin to locally isothermal disc models, self-gravity forces the discs longitude of pericenter to librate about a fixed orientation with respect to the binary apsidal line ($pi$). The discs radiative properties play an important role in the evolution of discs in binaries. A radiative disc has an overall shape and internal structure that are significantly different compared to a locally isothermal disc with same temperature profile. This is an important finding both for describing the evolutionary track of the disc during its progressive mass loss, and for planet formation since the internal structure of the disc is relevant for planetesimals growth in binary systems. The non-symmetrical distribution of mass in these discs causes large eccentricities for planetesimals that may affect their growth.



rate research

Read More

We aim to examine the detailed disc structure that arises in a misaligned binary system as a function of the disc aspect ratio h, viscosity parameter alpha, disc outer radius R, and binary inclination angle gamma_F. We also aim to examine the conditions that lead to an inclined disc being disrupted by strong differential precession. We use a grid-based hydrodynamic code to perform 3D simulations. This code has a relatively low numerical viscosity compared with the SPH schemes that have been used previously to study inclined discs. This allows the influence of viscosity on the disc evolution to be tightly controlled. We find that for thick discs (h=0.05) with low alpha, efficient warp communication in the discs allows them to precess as rigid bodies with very little warping or twisting. Such discs are observed to align with the binary orbit plane on the viscous evolution time. Thinner discs with higher viscosity, in which warp communication is less efficient, develop significant twists before achieving a state of rigid-body precession. Under the most extreme conditions we consider (h=0.01, alpha=0.005 and alpha=0.1), we find that discs can become broken or disrupted by strong differential precession. Discs that become highly twisted are observed to align with the binary orbit plane on timescales much shorter than the viscous timescale, possibly on the precession time. We find agreement with previous studies that show that thick discs with low viscosity experience mild warping and precess rigidly. We also find that as h is decreased substantially, discs may be disrupted by strong differential precession, but for disc thicknesses that are significantly less (h=0.01) than those found in previous studies (h=0.03).
We study the evolution of the eccentricity and inclination of protoplanetary embryos and low-mass protoplanets (from a fraction of an Earth mass to a few Earth masses) embedded in a protoplanetary disc, by means of three dimensional hydrodynamics calculations with radiative transfer in the diffusion limit. When the protoplanets radiate in the surrounding disc the energy released by the accretion of solids, their eccentricity and inclination experience a growth toward values which depend on the luminosity to mass ratio of the planet, which are comparable to the discs aspect ratio and which are reached over timescales of a few thousand years. This growth is triggered by the appearance of a hot, under-dense region in the vicinity of the planet. The growth rate of the eccentricity is typically three times larger than that of the inclination. In long term calculations, we find that the excitation of eccentricity and the excitation of inclination are not independent. In the particular case in which a planet has initially a very small eccentricity and inclination, the eccentricity largely overruns the inclination. When the eccentricity reaches its asymptotic value, the growth of inclination is quenched, yielding an eccentric orbit with a very low inclination. As a side result, we find that the eccentricity and inclination of non-luminous planets are damped more vigorously in radiative discs than in isothermal discs.
Context. More than 60 planets have been discovered so far in systems that harbour two stars, some of which have binary semi-major axes as small as 20 au. It is well known that the formation of planets in such systems is strongly influenced by the stellar components, since the protoplanetary disc and the particles within are exposed to the gravitational influence of the binary. However, the question on how self-gravitating protoplanetary bodies affect the evolution of a radiative, circumprimary disc is still open. Aims. We present our 2D hydrodynamical GPU-CPU code and study the interaction of several thousands of self-gravitating particles with a viscous and radiative circumprimary disc within a binary star system. To our knowledge this program is the only one at the moment that is capable to handle this many particles and to calculate their influence on each other and on the disc. Methods. We performed hydrodynamical simulations of a circumstellar disc assuming the binary system to be coplanar. Our gridbased staggered mesh code relies on ideas from ZEUS-2D, where we implemented the FARGO algorithm and an additional energy equation for the radiative cooling according to opacity tables. To treat particle motion we used a parallelised version of the precise Bulirsch - Stoer algorithm. Four models in total where computed taking into account (i) only N-body interaction, (ii) N-body and disc interaction, (iii) the influence of computational parameters (especially smoothing) on N-body interaction, and (iv) the influence of a quiet low-eccentricity disc while running model (ii). The impact velocities where measured at two different time intervals and were compared. Results. We show that the combination of disc- and N-body self-gravity can have a significant influence on the orbit evolution of roughly Moon sized protoplanets.
72 - K. Oka , T. Matsuda , I. Hachisu 2004
We first present a summary of our numerical work on accretion discs in close binary systems. Our recent studies on numerical simulations of the surface flow on the mass-losing star in a close binary star is then reviewed.
Many stars are in binaries or higher-order multiple stellar systems. Although in recent years a large number of binaries have been proven to host exoplanets, how planet formation proceeds in multiple stellar systems has not been studied much yet from the theoretical standpoint. In this paper we focus on the evolution of the dust grains in planet-forming discs in binaries. We take into account the dynamics of gas and dust in discs around each component of a binary system under the hypothesis that the evolution of the circumprimary and the circumsecondary discs is independent. It is known from previous studies that the secular evolution of the gas in binary discs is hastened due to the tidal interactions with their hosting stars. Here we prove that binarity affects dust dynamics too, possibly in a more dramatic way than the gas. In particular, the presence of a stellar companion significantly reduces the amount of solids retained in binary discs because of a faster, more efficient radial drift, ultimately shortening their lifetime. We prove that how rapidly discs disperse depends both on the binary separation, with discs in wider binaries living longer, and on the disc viscosity. Although the less-viscous discs lose high amounts of solids in the earliest stages of their evolution, they are dissipated slowly, while those with higher viscosities show an opposite behaviour. The faster radial migration of dust in binary discs has a striking impact on planet formation, which seems to be inhibited in this hostile environment, unless other disc substructures halt radial drift further in. We conclude that if planetesimal formation were viable in binary discs, this process would take place on very short time scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا