Do you want to publish a course? Click here

Recognizing Bangla Grammar using Predictive Parser

113   0   0.0 ( 0 )
 Added by K. M. Azharul Hasan
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

We describe a Context Free Grammar (CFG) for Bangla language and hence we propose a Bangla parser based on the grammar. Our approach is very much general to apply in Bangla Sentences and the method is well accepted for parsing a language of a grammar. The proposed parser is a predictive parser and we construct the parse table for recognizing Bangla grammar. Using the parse table we recognize syntactical mistakes of Bangla sentences when there is no entry for a terminal in the parse table. If a natural language can be successfully parsed then grammar checking from this language becomes possible. The proposed scheme is based on Top down parsing method and we have avoided the left recursion of the CFG using the idea of left factoring.



rate research

Read More

The applications of recurrent neural networks in machine translation are increasing in natural language processing. Besides other languages, Bangla language contains a large amount of vocabulary. Improvement of English to Bangla machine translation would be a significant contribution to Bangla Language processing. This paper describes an architecture of English to Bangla machine translation system. The system has been implemented with the encoder-decoder recurrent neural network. The model uses a knowledge-based context vector for the mapping of English and Bangla words. Performances of the model based on activation functions are measured here. The best performance is achieved for the linear activation function in encoder layer and the tanh activation function in decoder layer. From the execution of GRU and LSTM layer, GRU performed better than LSTM. The attention layers are enacted with softmax and sigmoid activation function. The approach of the model outperforms the previous state-of-the-art systems in terms of cross-entropy loss metrics. The reader can easily find out the structure of the machine translation of English to Bangla and the efficient activation functions from the paper.
227 - Han He , Jinho D. Choi 2021
Coupled with biaffine decoders, transformers have been effectively adapted to text-to-graph transduction and achieved state-of-the-art performance on AMR parsing. Many prior works, however, rely on the biaffine decoder for either or both arc and label predictions although most features used by the decoder may be learned by the transformer already. This paper presents a novel approach to AMR parsing by combining heterogeneous data (tokens, concepts, labels) as one input to a transformer to learn attention, and use only attention matrices from the transformer to predict all elements in AMR graphs (concepts, arcs, labels). Although our models use significantly fewer parameters than the previous state-of-the-art graph parser, they show similar or better accuracy on AMR 2.0 and 3.0.
349 - Junchi Yu , Tingyang Xu , Yu Rong 2021
The emergence of Graph Convolutional Network (GCN) has greatly boosted the progress of graph learning. However, two disturbing factors, noise and redundancy in graph data, and lack of interpretation for prediction results, impede further development of GCN. One solution is to recognize a predictive yet compressed subgraph to get rid of the noise and redundancy and obtain the interpretable part of the graph. This setting of subgraph is similar to the information bottleneck (IB) principle, which is less studied on graph-structured data and GCN. Inspired by the IB principle, we propose a novel subgraph information bottleneck (SIB) framework to recognize such subgraphs, named IB-subgraph. However, the intractability of mutual information and the discrete nature of graph data makes the objective of SIB notoriously hard to optimize. To this end, we introduce a bilevel optimization scheme coupled with a mutual information estimator for irregular graphs. Moreover, we propose a continuous relaxation for subgraph selection with a connectivity loss for stabilization. We further theoretically prove the error bound of our estimation scheme for mutual information and the noise-invariant nature of IB-subgraph. Extensive experiments on graph learning and large-scale point cloud tasks demonstrate the superior property of IB-subgraph.
We describe a parser of English effectuated by biologically plausible neurons and synapses, and implemented through the Assembly Calculus, a recently proposed computational framework for cognitive function. We demonstrate that this device is capable of correctly parsing reasonably nontrivial sentences. While our experiments entail rather simple sentences in English, our results suggest that the parser can be extended beyond what we have implemented, to several directions encompassing much of language. For example, we present a simple Russian version of the parser, and discuss how to handle recursion, embedding, and polysemy.
153 - Liwen Zhang , Kewei Tu , Yue Zhang 2019
Neural models have been investigated for sentiment classification over constituent trees. They learn phrase composition automatically by encoding tree structures but do not explicitly model sentiment composition, which requires to encode sentiment class labels. To this end, we investigate two formalisms with deep sentiment representations that capture sentiment subtype expressions by latent variables and Gaussian mixture vectors, respectively. Experiments on Stanford Sentiment Treebank (SST) show the effectiveness of sentiment grammar over vanilla neural encoders. Using ELMo embeddings, our method gives the best results on this benchmark.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا