Do you want to publish a course? Click here

Measurements of a fast nuclear spin dynamics in a single InAs quantum dot with positively charged exciton

112   0   0.0 ( 0 )
 Added by Xiuming Dou
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

By using highly time-resolved spectroscopy with an alternative {sigma}+/{sigma} - laser pulse modulation technique, we are able to measure the fast buildup and decay times of the dynamical nuclear spin polarization (DNSP) at 5 K for a single InAs quantum dot (QD) with positively charged exciton. It is shown that the nuclear dipole-dipole interaction can efficiently depolarize DNSP with a typical time constant of 500 {mu}s in the absence of external magnetic field. By using an external field of 8 mT to suppress the nuclear dipolar interaction, the decay time turns to be mainly induced by interaction with unpaired electron and extends to about 5 ms. In addition, it is found that the time constant of hole-induced depolarization of nuclear spin is about 112 ms.



rate research

Read More

119 - Y. Cao , A. J. Bennett , I. Farrer 2015
Polarized cross-correlation spectroscopy on a quantum dot charged with a single hole shows the sequential emission of photons with common circular polarization. This effect is visible without magnetic field, but becomes more pronounced as the field along the quantization axis is increased. We interpret the data in terms of electron dephasing in the X+ state caused by the Overhauser field of nuclei in the dot. We predict the correlation timescale can be increased by accelerating the emission rate with cavity-QED.
We have fabricated a lateral double barrier magnetic tunnel junction (MTJ) which consists of a single self-assembled InAs quantum dot (QD) with ferromagnetic Co leads. The MTJ shows clear hysteretic tunnel magnetoresistance (TMR) effect, which is evidence for spin transport through a single semiconductor QD. The TMR ratio and the curve shapes are varied by changing the gate voltage.
189 - C. Bardot , M. Schwab , M. Bayer 2005
The exciton lifetimes $T_1$ in arrays of InAs/GaAs vertically coupled quantum dot pairs have been measured by time-resolved photoluminescence. A considerable reduction of $T_1$ by up to a factor of $sim$ 2 has been observed as compared to a quantum dots reference, reflecting the inter-dot coherence. Increase of the molecular coupling strength leads to a systematic decrease of $T_1$ with decreasing barrier width, as for wide barriers a fraction of structures shows reduced coupling while for narrow barriers all molecules appear to be well coupled. The coherent excitons in the molecules gain the oscillator strength of the excitons in the two separate quantum dots halving the exciton lifetime. This superradiance effect contributes to the previously observed increase of the homogeneous exciton linewidth, but is weaker than the reduction of $T_2$. This shows that as compared to the quantum dots reference pure dephasing becomes increasingly important for the molecules.
The preparation of a coherent heavy-hole spin via ionization of a spin-polarized electron-hole pair in an InAs/GaAs quantum dot in a Voigt geometry magnetic field is investigated. For a dot with a 17 ueV bright-exciton fine-structure splitting, the fidelity of the spin preparation is limited to 0.75, with optimum preparation occurring when the effective fine-structure of the bright-exciton matches the in-plane hole Zeeman energy. In principle, higher fidelities can be achieved by minimizing the bright-exciton fine-structure splitting.
Anisotropy of spin-orbit interaction (SOI) is studied for a single uncapped InAs self-assembled quantum dot (SAQD) holding just a few electrons. The SOI energy is evaluated from anti-crossing or SOI induced hybridization between the ground and excited states with opposite spins. The magnetic angular dependence of the SOI energy falls on an absolute cosine function for azimuthal rotation, and a cosine-like function for tilting rotation. The SOI energy is even quenched at a specific rotation. These angular dependence compare well to calculation of Rashba SOI in a two-dimensional harmonic potential.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا