LOFT: Large Observatory For X-ray Timing


Abstract in English

High-time-resolution X-ray observations of compact objects provide direct access to strong field gravity, black hole masses and spins, and the equation of state of ultra-dense matter. LOFT, the large observatory for X-ray timing, is specifically designed to study the very rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars. A 10 m^2-class instrument in combination with good spectral resolution (<260 eV @ 6 keV) is required to exploit the relevant diagnostics and holds the potential to revolutionise the study of collapsed objects in our Galaxy and of the brightest supermassive black holes in active galactic nuclei. LOFT will carry two main instruments: a Large Area Detector (LAD), to be built at MSSL/UCL with the collaboration of the Leicester Space Research Centre for the collimator) and a Wide Field Monitor (WFM). The ground-breaking characteristic of the LAD (that will work in the energy range 2-30 keV) is a mass per unit surface in the range of ~10 kg/m^2, enabling an effective area of ~10 m^2 (@10 keV) at a reasonable weight and improving by a factor of ~20 over all predecessors. This will allow timing measurements of unprecedented sensitivity, allowing the capability to measure the mass and radius of neutron stars with ~5% accuracy, or to reveal blobs orbiting close to the marginally stable orbit in active galactic nuclei. In this contribution we summarise the characteristics of the LOFT instruments and give an overview of the expectations for its capabilities.

Download