Do you want to publish a course? Click here

H.E.S.S. observations of the Large Magellanic Cloud

280   0   0.0 ( 0 )
 Added by Nukri Komin
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Large Magellanic Cloud (LMC) is a satellite galaxy of the Milky Way at a distance of approximately 48 kpc. Despite its distance it harbours several interesting targets for TeV gamma-ray observations. The composite supernova remnant N 157B/PSR J05367-6910 was discovered by H.E.S.S. being an emitter of very high energy (VHE) gamma-rays. It is the most distant pulsar wind nebula ever detected in VHE gamma-rays. Another very exciting target is SN 1987A, the remnant of the most recent supernova explosion that occurred in the neighbourhood of the Milky Way. Models for Cosmic Ray acceleration in this remnant predict gamma-ray emission at a level detectable by H.E.S.S. but this has not been detected so far. Fermi/LAT discovered diffuse high energy (HE) gamma-ray emission from the general direction of the massive star forming region 30 Doradus but no clear evidence for emission from either N 157B or SN 1987A has been published. The part of the LMC containing these objects has been observed regularly with the H.E.S.S. telescopes since 2003. With deep observations carried out in 2010 a very good exposure of this part of the sky has been obtained. The current status of the H.E.S.S. LMC observations is reported along with new results on N 157B and SN 1987A.



rate research

Read More

We present high-resolution (sub-parsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in $^{12}$CO(2-1) and high column density regions in $^{13}$CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the Planck cold cloud or PCC) in the southern outskirts of the galaxy where star-formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and 5 times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface density structures tend to exhibit super-virial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (leaves) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-linewidth relationships.
73 - S.Mereghetti , D.Gotz , A.Paizis 2004
We present the preliminary results of the INTEGRAL survey of the Large Magellanic Cloud. The observations have been carried out in January 2003 (about 10^6 s) and January 2004 (about 4x10^5 s). Here we concentrate on the bright sources LMC X-1, LMC X-2, LMC X-3 located in our satellite galaxy, and on the serendipitous detections of the Galactic Low Mass X-ray Binary EXO 0748-676 and of the Seyfert 2 galaxy IRAS 04575-7537.
283 - Gabriele Warth 2014
We have studied the HII region DEM L299 in the Large Magellanic Cloud to understand its physical characteristics and morphology in different wavelengths. We performed a spectral analysis of archived XMM-Newton EPIC data and studied the morphology of DEM L299 in X-ray, optical, and radio wavelengths. We used H alpha, [SII], and [OIII] data from the Magellanic Cloud Emission Line Survey and radio 21 cm line data from the Australia Telescope Compact Array (ATCA) and the Parkes telescope, and radio continuum data from ATCA and the Molonglo Synthesis Telescope. Our morphological studies imply that, in addition to the supernova remnant SNR B0543-68.9 reported in previous studies, a superbubble also overlaps the SNR in projection. The position of the SNR is clearly defined through the [SII]/H alpha flux ratio image. Moreover, the optical images show a shell-like structure that is located farther to the north and is filled with diffuse X-ray emission, which again indicates the superbubble. Radio 21 cm line data show a shell around both objects. Radio continuum data show diffuse emission at the position of DEM L299, which appears clearly distinguished from the HII region N 164 that lies south-west of it. We determined the spectral index of SNR B0543-68.9 to be alpha=-0.34, which indicates the dominance of thermal emission and therefore a rather mature SNR. We determined the basic properties of the diffuse X-ray emission for the SNR, the superbubble, and a possible blowout region of the bubble, as suggested by the optical and X-ray data. We obtained an age of 8.9 (3.5-18.1) kyr for the SNR and a temperature of 0.64 (0.44-1.37) keV for the hot gas inside the SNR, and a temperature of the hot gas inside the superbubble of 0.74 (0.44-1.1) keV. We conclude that DEM L299 consists of a superposition of SNR B0543-68.9 and a superbubble, which we identified based on optical data.
We present IRAC and MIPS images and photometry of a sample of previously known planetary nebulae (PNe) from the SAGE survey of the Large Magellanic Cloud (LMC) performed with the Spitzer Space Telescope. Of the 233 known PNe in the survey field, 185 objects were detected in at least two of the IRAC bands, and 161 detected in the MIPS 24 micron images. Color-color and color-magnitude diagrams are presented using several combinations of IRAC, MIPS, and 2MASS magnitudes. The location of an individual PN in the color-color diagrams is seen to depend on the relative contributions of the spectral components which include molecular hydrogen, polycyclic aromatic hydrocarbons (PAHs), infrared forbidden line emission from the ionized gas, warm dust continuum, and emission directly from the central star. The sample of LMC PNe is compared to a number of Galactic PNe and found to not significantly differ in their position in color-color space. We also explore the potential value of IR PNe luminosity functions (LFs) in the LMC. IRAC LFs appear to follow the same functional form as the well-established [O III] LFs although there are several PNe with observed IR magnitudes brighter than the cut-offs in these LFs.
Gamma-ray binaries consist of a neutron star or a black hole interacting with a normal star to produce gamma-ray emission that dominates the radiative output of the system. Only a handful of such systems have been previously discovered, all within our Galaxy. Here we report the discovery with the Fermi Large Area Telescope (LAT) of a luminous gamma-ray binary in the Large Magellanic Cloud from a search for periodic modulation in all sources in the third Fermi LAT catalog. This is the first such system to be found outside the Milky Way. The system has an orbital period of 10.3 days and is associated with a massive O5III star located in the supernova remnant DEM L241, previously identified as the candidate high-mass X-ray binary (HMXB) CXOU J053600.0-673507. X-ray and radio emission are also modulated on the 10.3 day period, but are in anti-phase with the gamma-ray modulation. Optical radial velocity measurements suggest that the system contains a neutron star. The source is significantly more luminous than similar sources in the Milky Way at radio, optical, X-ray and gamma-ray wavelengths. The detection of this extra-galactic system, but no new Galactic systems raises the possibility that the predicted number of gamma-ray binaries in our Galaxy has been overestimated, and that HMXBs may be born containing relatively slowly rotating neutron stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا