Do you want to publish a course? Click here

On the combinatorics of sparsification

242   0   0.0 ( 0 )
 Added by Fenix Huang
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Background: We study the sparsification of dynamic programming folding algorithms of RNA structures. Sparsification applies to the mfe-folding of RNA structures and can lead to a significant reduction of time complexity. Results: We analyze the sparsification of a particular decomposition rule, $Lambda^*$, that splits an interval for RNA secondary and pseudoknot structures of fixed topological genus. Essential for quantifying the sparsification is the size of its so called candidate set. We present a combinatorial framework which allows by means of probabilities of irreducible substructures to obtain the expected size of the set of $Lambda^*$-candidates. We compute these expectations for arc-based energy models via energy-filtered generating functions (GF) for RNA secondary structures as well as RNA pseudoknot structures. For RNA secondary structures we also consider a simplified loop-energy model. This combinatorial analysis is then compared to the expected number of $Lambda^*$-candidates obtained from folding mfe-structures. In case of the mfe-folding of RNA secondary structures with a simplified loop energy model our results imply that sparsification provides a reduction of time complexity by a constant factor of 91% (theory) versus a 96% reduction (experiment). For the full loop-energy model there is a reduction of 98% (experiment).



rate research

Read More

259 - D.Orlando , S.Reffert 2007
In this note, we give a closed formula for the partition function of the dimer model living on a (2 x n) strip of squares or hexagons on the torus for arbitrary even n. The result is derived in two ways, by using a Potts model like description for the dimers, and via a recursion relation that was obtained from a map to a 1D monomer-dimer system. The problem of finding the number of perfect matchings can also be translated to the problem of finding a minmal feedback arc set on the dual graph.
We give a brief overview of the life and combinatorics of Jeff Remmel, a mathematician with successful careers in both logic and combinatorics.
We give a geometric realization of the polyhedra governed by the structure of associative algebras with co-inner products, or more precisely, governed by directed planar trees. Our explicit realization of these polyhedra, which include the associahedra in a special case, shows in particular that these polyhedra are homeomorphic to balls. We also calculate the number of vertices of the lowest generalized associahedra, giving appropriate generalizations of the Catalan numbers.
The finite colliding bullets problem is the following simple problem: consider a gun, whose barrel remains in a fixed direction; let $(V_i)_{1le ile n}$ be an i.i.d. family of random variables with uniform distribution on $[0,1]$; shoot $n$ bullets one after another at times $1,2,dots, n$, where the $i$th bullet has speed $V_i$. When two bullets collide, they both annihilate. We give the distribution of the number of surviving bullets, and in some generalisation of this model. While the distribution is relatively simple (and we found a number of bold claims online), our proof is surprisingly intricate and mixes combinatorial and geometric arguments; we argue that any rigorous argument must very likely be rather elaborate.
We consider the algebraic combinatorics of the set of injections from a $k$-element set to an $n$-element set. In particular, we give a new combinatorial formula for the spherical functions of the Gelfand pair $(S_k times S_n, text{diag}(S_k) times S_{n-k})$. We use this combinatorial formula to give new Delsarte linear programming bounds on the size of codes over injections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا