No Arabic abstract
The small group of lambda Bootis stars comprises late B to early F-type stars, with moderate to extreme (up to a factor 100) surface underabundances of most Fe-peak elements and solar abundances of lighter elements (C, N, O, and S). The main mechanisms responsible for this phenomenon are atmospheric diffusion, meridional mixing and accretion of material from their surroundings. Especially spectroscopic binary (SB) systems with lambda Bootis type components are very important to investigate the evolutionary status and accretion process in more details. For HD 210111, also delta Scuti type pulsation was found which gives the opportunity to use the tools of asteroseismology for further investigations. The latter could result in strict constraints for the amount of diffusion for this star. Together with models for the accretion and its source this provides a unique opportunity to shed more light on these important processes. We present classification and high resolution spectra for HD 210111. A detailed investigation of the most likely combinations of single star components was performed. For this, composite spectra with different stellar astrophysical parameters were calculated and compared to the observations to find the best fitting combination. HD 210111 comprises two equal (within the estimated errors) stars with T(eff)=7400K, logg=3.8dex, [M/H]=-1.0dex and vsini=30km/s. This result is in line with other strict observational facts published so far for this object. It is only the third detailed investigated lambda Bootis type SB system, but the first one with a known IR-excess.
ROTSE1 J164341.65+251748.1 was photometrically observed in the V band during three epochs with the 0.84-m telescope of the San Pedro Martir Observatory in Mexico. Based on additional BVR photometry, we find that the primary star has a spectral type around G0V. The light curve of the system is typical of a W~UMa type binary stars and has an orbital period of $sim$ 0.323 days. In an effort to gain a better understanding of the binary system and determine its physical properties, we analyzed the light curve with the Wilson and Devinney method. We found that ROTSE1 J164341.65+251748.1 has a mass ratio of $sim$ 0.34 and that the less massive component is over 230 K hotter than the primary star. The inclination of the system is $sim$ 84.6 degrees, and the {bf degree} of over-contact is 11%. The analysis shows the presence of variable bright spots on the primary star.
With Hubble Space Telescope Fine Guidance Sensor astrometry and previously published radial velocity measures we explore the exoplanetary system HD 202206. Our modeling results in a parallax, $pi_{abs} = 21.96pm0.12$ milliseconds of arc, a mass for HD 202206 B of M$_B = 0.089^{ +0.007}_{-0.006}$ Msun, and a mass for HD 202206 c of M$_c = 17.9 ^{ +2.9}_{-1.8}$ MJup. HD 202206 is a nearly face-on G+M binary orbited by a brown dwarf. The system architecture we determine supports past assertions that stability requires a 5:1 mean motion resonance (we find a period ratio, $P_c/P_B = 4.92pm0.04$) and coplanarity (we find a mutual inclination, Phi = 6 arcdeg pm 2 arcdeg).
An extensive spectroscopic study on xi Boo A (chromospherically active solar-type star) was conducted based on the spectra obtained in 2008 December though 2010 May, with an aim to detect any spectrum variability and to understand its physical origin. For each spectrum, the atmospheric parameters were spectroscopically determined based on Fe lines, and the equivalent widths (along with the line-broadening parameters) of selected 99 lines were measured. We could detect meaningful small fluctuations in the equivalent widths of medium-strength lines. This variation was found to correlate with the effective temperature (T_eff) consistently with the T-sensitivity of each line, which indicates that the difference in the mean temperature averaged over the disk of inhomogeneous condition is mainly responsible for this variability. It was also found that the macrobroadening widths of medium-strength lines and the equivalent widths dispersion of saturated lines tend to increase with the effective Lande factor, suggesting an influence of magnetic field. Our power spectrum analysis applied to the time-sequence data of V I/Fe II line-strength ratio and T_eff could not confirm the 6.4 d period reported by previous studies. We suspect that surface inhomogeneities of xi Boo A at the time of our observations were not so much simple (such as single star patch) as rather complex (e.g., intricate aggregate of spots and faculae).
We analyse TESS light curves for 70 southern $lambda$ Boo stars to identify binaries and to determine which of them pulsate as $delta$ Scuti stars. We find two heartbeat stars and two eclipsing binaries among the sample. We calculate that 81 percent of $lambda$ Boo stars pulsate as $delta$ Sct variables, which is about twice that of normal stars over the same parameter space. We determine the temperatures and luminosities of the $lambda$ Boo stars from photometry and Gaia DR2 parallaxes. A subset of 40 $lambda$ Boo stars have 2-min TESS data, reliable temperatures and luminosities, and $delta$ Sct pulsation. We use Petersen diagrams (period ratios), echelle diagrams and the period--luminosity relation to identify the fundamental mode in 20 of those 40 stars and conclude that a further 8 stars are not pulsating in this mode. For the remaining 12, the fundamental mode cannot be unambiguously identified. Further mode identification is possible for 12 of the fundamental mode pulsators that have regular sequences of pulsation overtones in their echelle diagrams. We use stellar evolution models to determine statistically that the $lambda$ Boo stars are only superficially metal weak. Simple pulsation models also better fit the observations at a metallicity of $Z=0.01$ than at $Z=0.001$. The TESS observations reveal the great potential of asteroseismology on $lambda$ Boo stars, for determining precise stellar ages and shedding light on the origin(s) of the $lambda$ Boo phenomenon.
We present new imaging and spectroscopic data of the young Herbig star HD 144432 A, which was known to be a binary star with a separation of 1.47 arcsec. High-resolution NIR imaging data obtained with NACO at the VLT reveal that HD 144432 B itself is a close binary pair with a separation of 0.1 arcsec. High-resolution optical spectra, acquired with FEROS at the 2.2m MPG/ESO telescope in La Silla, of the primary star and its co-moving companions were used to determine their main stellar parameters such as effective temperature, surface gravity, radial velocity, and projected rotational velocity by fitting synthetic spectra to the observed stellar spectra. The two companions, HD 144432 B and HD 144432 C, are identified as low-mass T Tauri stars of spectral type K7V and M1V, respectively. From the position in the HRD the triple system appears to be co-eval with a system age of 6+/-3 Myr.