No Arabic abstract
We discuss the temporal distribution of dynamic processes in driven polymer transport inherent to flexible chains due to stochastic tension propagation. The stochasticity originates from the disordered initial configuration of an equilibrium polymer coil, which results in random paths for tension propagation. We consider the process time for when translocation occurs across a fixed pore and when stretching occurs by pulling the chain end. A scaling argument for the mean and standard deviation of the process time is provided using the two-phase picture for stochastic propagation. The two cases are found to differ remarkably. The process time distribution of the translocation exhibits substantial spreading even in the long-chain limit, unlike that found for the dynamics of polymer stretching. In addition, the process time distribution in the driven translocation is shown to have a characteristic asymmetric shape.
We present a Brownian dynamics model of driven polymer translocation, in which non-equilibrium memory effects arising from tension propagation (TP) along the cis side subchain are incorporated as a time-dependent friction. To solve the effective friction, we develop a finite chain length TP formalism, expanding on the work of Sakaue [Sakaue, PRE 76, 021803 (2007)]. The model, solved numerically, yields results in excellent agreement with molecular dynamics simulations in a wide range of parameters. Our results show that non-equilibrium TP along the cis side subchain dominates the dynamics of driven translocation. In addition, the model explains the different scaling of translocation time w.r.t chain length observed both in experiments and simulations as a combined effect of finite chain length and pore-polymer interactions.
Two phase picture is a simple and effective methodology to capture the nonequilibrium dynamics of polymer associated with tension propagation. When applying it to the driven translocation process, there is a point to be noted, as briefly discussed in our recent article [Phys. Rev. E 85, 061803 (2012)]. In this article, we address this issue in detail and modify our previous prediction [Euro. Phys. J. E 34, 135 (2011)] by adopting an alternative steady-state ansatz. The modified scaling prediction turns out to be the same as that of the iso-flux model recently proposed by Rowghanian and Grosberg [J. Phys. Chem. B 115, 14127-14135 (2011)].
During polymer translocation driven by e.g. voltage drop across a nanopore, the segments in the cis-side is incessantly pulled into the pore, which are then pushed out of it into the trans-side. This pulling and pushing polymer segments are described in the continuum level by nonlinear transport processes known, respectively, as fast and slow diffusions. By matching solutions of both sides through the mass conservation across the pore, we provide a physical basis for the cis and trans dynamical asymmetry, a feature repeatedly reported in recent numerical simulations. We then predict how the total driving force is dynamically allocated between cis (pulling) and trans (pushing) sides, demonstrating that the trans-side event adds a finite-chain length effect to the dynamical scaling, which may become substantial for weak force and/or high pore friction cases.
We discuss temporal efficiency of template-directed polymer synthesis, such as DNA replication and transcription, under a given template string. To weigh the synthesis speed and accuracy on the same scale, we propose a template-directed synthesis (TDS) rate, which contains an expression analogous to that for the Shannon entropy. Increasing the synthesis speed accelerates the TDS rate, but the TDS rate is lowered if the produced sequences are diversified. We apply the TDS rate to some production system models and investigate how the balance between the speed and the accuracy is affected by changes in the system conditions.
It is widely believed that the swimming speed, $v$, of many flagellated bacteria is a non-monotonic function of the concentration, $c$, of high-molecular-weight linear polymers in aqueous solution, showing peaked $v(c)$ curves. Pores in the polymer solution were suggested as the explanation. Quantifying this picture led to a theory that predicted peaked $v(c)$ curves. Using new, high-throughput methods for characterising motility, we have measured $v$, and the angular frequency of cell-body rotation, $Omega$, of motile Escherichia coli as a function of polymer concentration in polyvinylpyrrolidone (PVP) and Ficoll solutions of different molecular weights. We find that non-monotonic $v(c)$ curves are typically due to low-molecular weight impurities. After purification by dialysis, the measured $v(c)$ and $Omega(c)$ relations for all but the highest molecular weight PVP can be described in detail by Newtonian hydrodynamics. There is clear evidence for non-Newtonian effects in the highest molecular weight PVP solution. Calculations suggest that this is due to the fast-rotating flagella `seeing a lower viscosity than the cell body, so that flagella can be seen as nano-rheometers for probing the non-Newtonian behavior of high polymer solutions on a molecular scale.