Do you want to publish a course? Click here

Validity of nonequilibrium work relations for the rapidly expanding quantum piston

217   0   0.0 ( 0 )
 Added by Haitao Quan
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent work by Teifel and Mahler [Eur. Phys. J. B 75, 275 (2010)] raises legitimate concerns regarding the validity of quantum nonequilibrium work relations in processes involving moving hard walls. We study this issue in the context of the rapidly expanding one-dimensional quantum piston. Utilizing exact solutions of the time-dependent Schru007fodinger equation, we find that the evolution of the wave function can be decomposed into static and dynamic components, which have simple semiclassical interpretations in terms of particle-piston collisions. We show that nonequilibrium work relations remains valid at any finite piston speed, provided both components are included, and we study explicitly the work distribution for this model system.



rate research

Read More

69 - Bo-Bo Wei 2017
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extend to $mathcal{PT}$-symmetric quantum system with unbroken $mathcal{PT}$ symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory and Onsager reciprocal relations for the $mathcal{PT}$-symmetric quantum system are recovered as special cases of the universal quantum work relation in $mathcal{PT}$-symmetric quantum system. In the regime of broken $mathcal{PT}$ symmetry, the universal quantum work relation does not hold as the norm is not preserved during the dynamics.
For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to the classical definition of work has not been carefully examined. In this paper we employ semiclassical methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence between classical and quantal definitions of work in systems with one degree of freedom. We find that a semiclassical work distribution, built from classical trajectories that connect the initial and final energies, provides an excellent approximation to the quantum work distribution when the trajectories are assigned suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum work distribution converges to the classical distribution, decorated by a quantum interference pattern. We also derive the form of the quantum work distribution at the boundary between classically allowed and forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the correspondence principle applies in the context of quantum and classical work distributions, and contribute to the understanding of work and nonequilibrium work relations in the quantum regime.
A universal quantum work relation is proved for isolated time-dependent Hamiltonian systems in a magnetic field as the consequence of microreversibility. This relation involves a functional of an arbitrary observable. The quantum Jarzynski equality is recovered in the case this observable vanishes. The Green-Kubo formula and the Casimir-Onsager reciprocity relations are deduced thereof in the linear response regime.
81 - T. Koide 2017
Jarzynskis nonequilibrium work relation can be understood as the realization of the (hidden) time-generator reciprocal symmetry satisfied for the conditional probability function. To show this, we introduce the reciprocal process where the classical probability theory is expressed with real wave functions, and derive a mathematical relation using the symmetry. We further discuss that the descriptions by the standard Markov process from an initial equilibrium state are indistinguishable from those by the reciprocal process. Then the Jarzynski relation is obtained from the mathematical relation for the Markov processes described by the Fokker-Planck, Kramers and relativistic Kramers equations.
130 - Ying-Jen Yang , Hong Qian 2021
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the overall fluctuations of the dynamics, representing the uncertainties in the past and in the future. A generalized Einstein relation is a consequence solely because the dynamics being stationary; and the Green-Kubo formula reflects a balance between the two mechanisms. Equilibrium with reversibility is characterized by a novel covariance symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا